GLP-1的“心”保护、“心”希望、“心”征程

编者按:自GLP-1被发现以来,已然成为一种“多面手”激素——其接二连三的代谢功能被人们发现,远远超出了作为肠促胰素的经典定义。GLP-1众多有益的作用使其受体激动剂逐渐成为更多新兴的治疗领域如脂肪肝、肥胖和神经退行性疾病等的冉冉之“星”药物,而GLP-1的心血管保护作用近年来更是被大家看好,甚至指南当中的地位也因此熠熠生辉。时值利拉鲁肽在我国上市10周年、司美格鲁肽新上市之际,我们邀请一众专家,讲述一系列关于GLP-1的故事。本期特邀北京大学第一医院霍勇教授带您从GLP-1对损伤后心脏功能的影响、心脏代谢功能的影响、心率/血压的影响等方面探寻其心血管保护作用的机制。

GLP-1对心血管的影响

GLP-1R mRNA在心脏中的存在首先是在大鼠[1]和人类[2,3]中被证实。随后在GLP-1R启动子控制下表达绿色荧光蛋白(GFP)的小鼠中证实了GLP-1在蛋白水平[4,5]和组织学上的表达。在这些小鼠中,GLP-1R在心房心肌细胞中散在表达,在冠脉血管平滑肌细胞中广泛表达,而在心室中不表达[6]。一篇综述文章[7]提及GLP-1R在心血管系统中的解剖位置表达具有物种相关的差异。使用多种不同抗血清可在小鼠的心肌细胞、心内膜、微血管内皮细胞和冠状动脉平滑肌细胞中发现GLP-1R的免疫反应性[4]。在人类,GLP-1R主要在内皮细胞、冠状动脉和平滑肌细胞中表达[2,8]。然而,免疫组化的定位数据与GLP-1R mRNA原位杂交检测之间几乎没有一致性,这可能与GLP-1R抗体相关的特异性问题相关。使用特异性良好的抗体,发现GLP-1R在非人灵长类和人窦房结中均有表达[9],这与GLP-1对心率发挥的作用相一致。近期的一项研究显示令人惊讶的结果,即在人类心室GLP-1R mRNA也有强烈表达,但无法确定GLP-1R蛋白的确切定位[10]。


尽管GLP-1R激动剂以其促胰岛素和降低体重的作用而闻名,但它也对啮齿动物的心血管系统产生一系列有益的作用,包括通过抑制心肌细胞凋亡来增加心肌细胞存活,改善内皮功能障碍[8,11],改善损伤和心力衰竭后的局部和总心输出量[12-15](图1)。高血压患者也有血压降低的报道[16]。延长利拉鲁肽治疗时间可进一步改善T2DM患者的心血管结局[17]。值得注意的是,GLP-1对心血管功能的改善至少部分独立于其降低体重和改善脂质代谢的能力,因此GLP-1可能通过直接作用于GLP-1R以及独立于位于心脏GLP-1R作用的间接机制来发挥其对心脏的作用[4,7,18]。


GLP-1的“心”保护、“心”希望、“心”征程

图1. GLP-1的代谢作用示意图


GLP-1对心脏损伤后心功能的影响

内皮功能障碍是与胰岛素抵抗和T2DM相关的常见并发症。用GLP-1治疗2型糖尿病合并冠脉疾病的患者可改善内皮功能,而不影响胰岛素抵抗[8]。在GLP-1治疗1型糖尿病的研究中也有类似的发现[19],但GLP-1对内皮功能的改善似乎与天然GLP-1有关,在GLP-1R激动剂与其他等量降糖药物头对头比较时,没有观察到这种效果。


对T2DM患者和正常血糖对照组进行高糖钳夹时通过血流介导的血管舒张评估过程中,证实了GLP-1改善内皮功能[11]。在大鼠中有矛盾性的发现,即GLP-1(7-36酰胺)作为GLP-1R激动剂和exendin(9-39)作为GLP-1R拮抗剂,均可剂量依赖性地导致主动脉舒张,可能是通过环磷酸腺苷(cAMP)生成和KATP通道的激活[20]。


在急性心肌梗死犬中,输注GLP-1通过增加心肌葡萄糖摄取和增强左心室功能来改善心功能[13]。在同一动物模型中,再灌注后输注GLP-1可限制心肌休克(心室功能障碍而无心肌坏死)[14]。这些数据与非对照临床研究结果一致,该研究结果提示急性心肌梗死和严重收缩功能不全患者输注天然GLP-1 72小时可改善局部和整体左心室功能[15]。在小鼠诱发心肌梗死前给予利拉鲁肽7天治疗可提高小鼠生存率,减少心脏损伤和梗死面积,同时改善心输出量[12]。在离体灌注大鼠心脏中,急性GLP-1R激动作用可保护缺血/再灌注损伤[21,22],这种保护作用可被exendin(9-39)、cAMP抑制剂Rp-cAMP、磷脂酰肌醇3(PI3)激酶抑制剂LY294002或者有丝分裂原激活蛋白(MAP)激酶抑制剂UO126所阻断。GLP-1R激动剂的心脏保护作用依赖于经典的GLP-1R,伴随着心脏保护基因(包括Akt、GSK3β、PPARΔ、NRF-2和HO-1)在心脏的表达增强[12],并似乎部分独立于GLP -1引起的体重减轻。用利拉鲁肽治疗原代新生小鼠心肌细胞可以增加cAMP的生成并减少细胞凋亡[12]。GLP-1R激动剂在啮齿类动物心脏具有直接的细胞自主抗凋亡作用,GLP-1可降低缺氧诱导的离体新生大鼠心肌细胞凋亡,这种GLP-1抗凋亡作用可被LY29400(PI3K)抑制或UO126(MARK)阻断[23]。


在健康和病理条件下GLP-1对左心室功能和心脏收缩力有不同的影响。GLP-1诱导的左心室功能改善在心肌病犬[13]、急性心肌梗死患者[15]和离体小鼠心脏[4]均有报道。认为心输出量的改善有一部分可能是由心率的增加引起的。然而,其他研究报告GLP-1不能直接加速离体成年大鼠心肌细胞的收缩,尽管GLP-1刺激了cAMP积累[24]。此外有报道称,尽管GLP-1刺激心肌葡萄糖摄取,但使用GLP-1治疗健康离体大鼠心脏可降低左心室收缩力[25]。然而在同一项研究中还发现,GLP-1可增强缺血后心脏的恢复,改善左心室功能和心肌葡萄糖摄取[25]。GLP-1R 敲除小鼠在灌注过程中基线左心室形成压(LVDP)升高[4]。与野生型小鼠对照组相比,缺乏GLP-1R的小鼠静息心率降低,左心室壁厚度增加[4,26],胰岛素或肾上腺素刺激时心脏收缩力降低[26]。总的来说,这些数据表明,GLP-1可改善缺血后心功能和心输出量,但在非病理条件下可能降低心输出量。虽然心肌细胞特异性缺失GLP-1R的小鼠基础心率(HR)较低,但在冠脉左前降支(LAD)闭塞后,它们完全保留了GLP-1R激动剂的心脏保护潜能[27]。这些数据提示心肌细胞GLP-1R信号在调节HR中是必需的,但与心肌损伤后GLP-1R激动剂的心脏保护作用无关。


GLP-1(9-36酰胺)的心脏代谢作用

越来越多的证据表明,GLP-1(7-36酰胺)的一些心脏效应是通过DPP-4降解生成的GLP-1(9-36酰胺)及其更小的降解产物所介导的,因此其心血管效应独立于GLP-1R信号。在GLP-1(7-36酰胺) 0.3nmol/l的剂量进行预处理,可改善野生型和GLP-1R 敲除小鼠缺血/再灌注(I/R)损伤后LVDP的恢复[4]。有趣的是,相对于GLP-1(7-36酰胺),exendin-4需要超过10倍的剂量才能在野生型小鼠中达到类似的效果,但在GLP-1R敲除小鼠中,超过10倍剂量的exendin-4的效果仍低于GLP-1(7-36酰胺)[4]。GLP-1(7-36酰胺)相对于exendin-4具有更好的心脏保护作用,且GLP-1(7-36酰胺)对GLP-1R 敲除小鼠具有保护作用而并非exendin-4提示GLP-1(7-36酰胺)的部分心脏保护作用是独立于GLP-1R信号通路,并可能通过DPP-4-裂解GLP-1的代谢产物GLP-1 (9-36酰胺)而发挥作用[4]。有趣的是,当用GLP-1(7-36酰胺)或GLP-1(9-36酰胺)预处理小鼠时,只有GLP-1(7-36酰胺)改善LVDP。然而,在再灌注时给予GLP-1(7-36酰胺)和GLP-1(9-36酰胺)均可改善野生型和GLP-1R 敲除小鼠I/R损伤后的功能恢复[4]。与此结果相一致的是,虽然exendin-4而非GLP-1(9-36酰胺)可在离体大鼠心脏具有限制梗死的潜能,但Exendin-4和GLP-1(9-36酰胺)都能在再灌注时改善左心室功能[22]。exendin-4的梗死限制潜能可被exendin(9-39)消除,因此表明这种心脏保护作用是GLP-1R依赖[22]。用exendin-4或GLP-1(9-36酰胺)处理离体小鼠心肌细胞可增加AKT和ERK的磷酸化[28],这两种蛋白均对心肌细胞的生长和存活有积极作用[29,30]。


总的来说,GLP-1(9-36酰胺)可能通过GLP-1R非依赖的机制来改善I/R损伤的恢复,GLP-1(7-36酰胺)而非GLP-1(9-36酰胺)通过GLP-1R信号影响心脏收缩力[4]。GLP-1(7-36酰胺)和GLP-1(9-36酰胺)而非exendin-4在离体和离体培养的肠系膜血管中促进血管舒张,两者作用相似且在GLP-1R敲除小鼠中此作用保留[4]。内源性GLP-1代谢物的低浓度和有限的药代动力学作用是否足以在生理环境下引起这种心脏保护作用仍值得怀疑。


GLP-1对心率(HR)、血压(BP)的影响

GLP-1对HR和BP的影响与物种有关。给大鼠静脉输注GLP-1(7-37酰胺)或exendin-4可快速增加HR以及收缩压、舒张压和平均动脉压(图7)[31,32]。GLP-1对大鼠BP的刺激在注射后3-5分钟左右达到峰值,25分钟后返回基线[31]。GLP-1R激动剂无论中枢还是外周给药均可增加啮齿动物的HR和BP[33-35],诱导肾上腺髓质儿茶酚胺神经元c-Fos表达,激活脑干中酪氨酸羟化酶(参与去甲肾上腺素生成的关键酶)[35]。这些数据表明,GLP-1的一些快速心血管作用可能是由于脑内儿茶酚胺流出增强和交感神经张力升高。然而,对大鼠使用利血平、普萘洛尔或酚妥拉明预处理后,GLP-1仍然具有升高BP的作用,这表明GLP-1的升压作用并不完全依赖于儿茶酚胺信号[31]。虽然GLP-1的升压效应并没有因抑制β-肾上腺素信号[31]所消除,但exendin-4诱导的HR却可以被β-肾上腺素受体拮抗剂普萘洛尔阻断[36],并且exendin-4对肾上腺切除大鼠的HR没有影响[18]。不管快速还是缓慢为小鼠中枢给药exendin-4均可增加HR和BP,同时兴奋性谷氨酸能和抑制性甘氨酸能神经传递到节前副交感神经的心脏迷走神经的作用降低。GLP-1对HR和BP的刺激是通过GLP-1R信号介导的,因为静脉输注exendin(9-39)可阻断GLP-1和exendin-4对HR和BP的诱导[32],而这些作用在Glp1r-/-小鼠中不存在[37]。总的来说,这些数据表明,GLP-1对正常动物的HR和BP的快速影响可能涉及交感神经和副交感神经系统的信号传导。但并非所有的啮齿动物研究都报道GLP-1R激动作用导致血压升高,剂量可能是一个导致差异的因素。虽然一些研究报告称,急性或慢性GLP-1R激动作用导致啮齿动物血压升高[31-33,35],但也有其他报告称与高血压发展相关的实验模型中,如盐敏感的db/db小鼠和Dahl S大鼠[38,39]可导致血压降低。利拉鲁肽能缓解小鼠血管紧张素Il (Ang-ll)诱导的高血压,这一作用在GLP-1R 敲除小鼠中缺失,并且在用exendin(9-39)预处理野生型小鼠时也能减弱[37]。


大多数啮齿动物研究发现GLP-1可增加HR和BP,但在清醒的牛犊中,静脉注射GLP-1(7-36酰胺)可快速升高HR,而不影响平均动脉BP[40]。大多数人类研究报道GLP-1仅对高血压患者发生血压不变或血压下降,对HR有中度作用[16,18,37,41]。快速输注GLP-1可能通过GLP-1诱导脂肪组织和骨骼肌的血管舒张而增加健康人类志愿者的心率和心输出量[42]。健康志愿者进行GLP-1输注可快速增加腹部皮下脂肪组织和骨骼肌的血流量,而不改变内脏的血流量[42]。值得注意的是,与GIP相比[43-46],GLP-1诱导的脂肪组织血流量增加并不依赖于餐后高血糖和高胰岛素血症,即使在空腹状态下也可以观察到[42]。


GLP-1R激动剂也被证实可降低T2DM患者的血压[7,18,41]。值得注意的是,在健康人类志愿者中,快速给予GLP-1、GLP-1(9-36酰胺)或艾塞那肽不影响肠系膜或肾动脉的血流,即排除了内脏血管扩张作为GLP-1[41]降低血压作用的潜在机制。近期的一项荟萃分析纳入了60项临床研究,GLP-1R受体激动剂被证明能够降低舒张压1.84~4.60mmHg,轻微增加心率2~3.35次/分[16]。相对于安慰剂,仅在艾塞那肽10μg/每日2次的治疗下,舒张压降低才达到显著水平(-1.08mmHg)[16]。这些数据与36项临床研究的综合分析相一致,证实了使用GLP-1R激动剂治疗长达4年的心血管安全性[47]。


GLP-1改善BP的分子机制尚不完全清楚。潜在的机制可能包括GLP-1诱导的血管舒张和一氧化氮依赖机制的激活[8,37,48]。确实,利拉鲁肽刺激主动脉舒张[37],但GLP-1也可能通过其减轻体重的能力间接降低血压。GLP-1R激动剂通过刺激肾脏排钠(钠尿)的能力也可以改善血压[49]。长期稳定的血压受血管内容量的影响,而血管内容量又受血管张力和细胞外液容积(ECFV)的影响;ECFV又由钠平衡决定。因此,当血压升高时,肾脏的反应是增加钠尿,通过降低ECFV来降低血压[50,51]。GLP-1R激动剂快速刺激啮齿动物和人类的钠尿,可能也通过降低ECFV进而降低血压[38,39,52,53]。利拉鲁肽可降低小鼠血管紧张素Il (Ang-ll)对收缩压和舒张压的刺激,GLP-1R 敲除小鼠或用exendin(9-39)或利钠肽受体拮抗剂Anantin预处理后这种刺激作用消失[37]。在野生型小鼠和离体心房心肌细胞中,利拉鲁肽可刺激心房利钠肽(ANP)的产生和分泌,但利拉鲁肽不能诱导ANP 敲除小鼠的钠尿排泄和血压降低[37]。利拉鲁肽刺激心脏ANP分泌是非蛋白激酶A(PKA)依赖的,但通过cAMP和磷脂酶C(PLC)依赖的方式由Epac2介导[37]。然而,在人类中,GLP-1对ANP分泌的影响报道并不一致,而血管紧张素Il通常降低[49,54]。总之,GLP-1R激动剂通过Epac2依赖刺激心脏ANP分泌而刺激钠尿排泄从而改善BP[37]。然而,大多数接受利拉鲁肽治疗的高血压患者并未表现出循环ANP的增加[54]。


专家寄语

GLP-1的“心”保护、“心”希望、“心”征程

霍勇 教授 北京大学第一医院

近年来,针对糖尿病或糖代谢异常患者出现了新的改善糖尿病患者预后的2大类药物,即SGLT2抑制剂和GLP-1R激动剂。这些药物改变了传统的糖尿病治疗理念,可以有效地减少主要心血管事件终点。今天讨论GLP-1R激动剂,如何应用好这类药物?更要从其降糖以外的血管保护作用、靶器官的保护作用、尤其是对大血管事件的保护作用来考量。GLP-1R激动剂被发现以来,无论是动物实验、体外实验还是人体实验、临床研究发现的各种证据足以证明这类药物从机制上降糖减重,更重要的是对血管粥样硬化程度、心脑血管事件终点具有保护作用。今天,我们讨论这类药物不仅是针对药物本身和机制,而是临床上如何更好地使用这类药物,更有效地改善糖尿病患者心脑血管事件预后,是糖尿病治疗革命化的新时代。


参考文献

[1] Bullock, B.P., Heller, R.S., Habener, J.F. 1996. Tissue distribution of messenger ribonucleic acid encoding the rat glucagon-like peptide-1 receptor. Endocrinology 137:2968-2978.

[2] Wei, Y., Mojsov, S. 1995. Tissue-specific expression of the human receptor for glucagon-like peptide-I: brain, heart and pancreatic forms have the same deduced amino acid sequences. FEBS Lett 358:219-224.

[3] Wei, Y., Mojsov, S. 1996. Distribution of GLP-1 and PACAP receptors in human tissues. Acta Physiol Scand 157:355-357.

[4] Ban, K., Noyan-Ashraf, M.H., Hoefer, J., Bolz, S.S., Drucker, D.J., Husain, M. 2008. Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and independent pathways. Circulation 117:2340-2350.

[5] Bhashyam, S., Fields, A.V., Patterson, B., Testani, J.M., Chen, L., Shen, Y.T., et al. 2010. Glucagon-like peptide-1 increases myocardial glucose uptake via p38alpha MAP kinasemediated, nitric oxide-dependent mechanisms in conscious dogs with dilated cardiomyopathy. Circ Heart Fail 3:512-521.

[6] Richards, P., Parker, H.E., Adriaenssens, A.E., Hodgson, J.M., Cork, S.C., Trapp, S., et al. 2014. Identification and characterization of GLP-1 receptor-expressing cells using a new transgenic mouse model. Diabetes 63:1224-1233.

[7] Sivertsen, J., Rosenmeier, J., Holst, J.J., Vilsboll, T. 2012. The effect of glucagon-like peptide 1 on cardiovascular risk. Nat Rev Cardiol 9:209-222.

[8] Nystrom, T., Gutniak, M.K., Zhang, Q., Zhang, F., Holst, J.J., Ahren, B., et al. 2004. Effects of glucagon-like peptide-1 on endothelial function in type 2 diabetes patients with stable coronary artery disease. Am J Physiol Endocrinol Metab 287:E1209-1215.

[9] Pyke, C., Heller, R.S., Kirk, R.K., Orskov, C., Reedtz-Runge, S., Kaastrup, P., et al. 2014. GLP-1 receptor localization in monkey and human tissue: novel distribution revealed with extensively validated monoclonal antibody. Endocrinology 155:1280-1290.

[10] Baggio, L.L., Yusta, B., Mulvihill, E.E., Cao, X., Streutker, C.J., Butany, J., et al. 2018. GLP-1 Receptor Expression Within the Human Heart. Endocrinology 159:1570-1584.

[11] Ceriello, A., Esposito, K., Testa, R., Bonfigli, A.R., Marra, M., Giugliano, D. 2011. The possible protective role of glucagon-like peptide 1 on endothelium during the meal and evidence for an "endothelial resistance" to glucagon-like peptide 1 in diabetes. Diabetes Care 34:697-702.

[12] Noyan-Ashraf, M.H., Momen, M.A., Ban, K., Sadi, A.M., Zhou, Y.Q., Riazi, A.M., et al. 2009. GLP-1R agonist liraglutide activates cytoprotective pathways and improves outcomes after experimental myocardial infarction in mice. Diabetes 58:975-983.

[13] Nikolaidis, L.A., Elahi, D., Hentosz, T., Doverspike, A., Huerbin, R., Zourelias, L., et al. 2004. Recombinant glucagon-like peptide-1 increases myocardial glucose uptake andimproves left ventricular performance in conscious dogs with pacing-induced dilated cardiomyopathy. Circulation 110:955-961.

[14] Nikolaidis, L.A., Doverspike, A., Hentosz, T., Zourelias, L., Shen, Y.T., Elahi, D., et al. 2005. Glucagon-like peptide-1 limits myocardial stunning following brief coronary occlusion and reperfusion in conscious canines. J Pharmacol Exp Ther 312:303-308.

[15] Nikolaidis, L.A., Mankad, S., Sokos, G.G., Miske, G., Shah, A., Elahi, D., et al. 2004. Effects of glucagon-like peptide-1 in patients with acute myocardial infarction and left ventricular dysfunction after successful reperfusion. Circulation 109:962-965.

[16] Sun, F., Wu, S., Guo, S., Yu, K., Yang, Z., Li, L., et al. 2015. Impact of GLP-1 receptor agonists on blood pressure, heart rate and hypertension among patients with type 2 diabetes: A systematic review and network meta-analysis. Diabetes Res Clin Pract 110:26- 37.

[17] Marso, S.P., Daniels, G.H., Brown-Frandsen, K., Kristensen, P., Mann, J.F., Nauck, M.A., et al. 2016. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med 375:311-322.

[18] Ussher, J.R., Drucker, D.J. 2012. Cardiovascular biology of the incretin system. Endocr Rev 33:187-215.

[19] Ceriello, A., De Nigris, V., Pujadas, G., La Sala, L., Bonfigli, A.R., Testa, R., et al. 2016. The simultaneous control of hyperglycemia and GLP-1 infusion normalize endothelial function in type 1 diabetes. Diabetes Res Clin Pract 114:64-68.

[20] Green, B.D., Hand, K.V., Dougan, J.E., McDonnell, B.M., Cassidy, R.S., Grieve, D.J. 2008. GLP-1 and related peptides cause concentration-dependent relaxation of rat aorta through a pathway involving KATP and cAMP. Arch Biochem Biophys 478:136-142.

[21] Bose, A.K., Mocanu, M.M., Carr, R.D., Brand, C.L., Yellon, D.M. 2005. Glucagon-like peptide 1 can directly protect the heart against ischemia/reperfusion injury. Diabetes 54:146-151.

[22] Sonne, D.P., Engstrom, T., Treiman, M. 2008. Protective effects of GLP-1 analogues exendin-4 and GLP-1(9-36) amide against ischemia-reperfusion injury in rat heart. Regul Pept 146:243-249.

[23] Wang, S.X., Xie, Y., Zhou, X., Sha, W.W., Wang, W.L., Han, L.P., et al. 2010. [Effect of glucagon-like peptide-1 on hypoxia-reoxygenation induced injury in neonatal rat cardiomyocytes]. Zhonghua Xin Xue Guan Bing Za Zhi 38:72-75.

[24] Vila Petroff, M.G., Egan, J.M., Wang, X., Sollott, S.J. 2001. Glucagon-like peptide-1 increases cAMP but fails to augment contraction in adult rat cardiac myocytes. Circ Res 89:445-452.

[25] Zhao, T., Parikh, P., Bhashyam, S., Bolukoglu, H., Poornima, I., Shen, Y.T., et al. 2006. Direct effects of glucagon-like peptide-1 on myocardial contractility and glucose uptake in normal and postischemic isolated rat hearts. J Pharmacol Exp Ther 317:1106-1113.

[26] Gros, R., You, X., Baggio, L.L., Kabir, M.G., Sadi, A.M., Mungrue, I.N., et al. 2003. Cardiac function in mice lacking the glucagon-like peptide-1 receptor. Endocrinology 144:2242-2252.

[27] Ussher, J.R., Baggio, L.L., Campbell, J.E., Mulvihill, E.E., Kim, M., Kabir, M.G., et al. 2014. Inactivation of the cardiomyocyte glucagon-like peptide-1 receptor (GLP-1R) unmasks cardiomyocyte-independent GLP-1R-mediated cardioprotection. Mol Metab 3:507-517.

[28] Ban, K., Kim, K.H., Cho, C.K., Sauve, M., Diamandis, E.P., Backx, P.H., et al. 2010. Glucagon-like peptide (GLP)-1(9-36)amide-mediated cytoprotection is blocked by exendin(9-39) yet does not require the known GLP-1 receptor. Endocrinology 151:1520-1531.

[29] Rose, B.A., Force, T., Wang, Y. 2010. Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale. Physiol Rev 90:1507-1546.

[30] Sussman, M.A., Volkers, M., Fischer, K., Bailey, B., Cottage, C.T., Din, S., et al. 2011. Myocardial AKT: the omnipresent nexus. Physiol Rev 91:1023-1070.

[31] Barragan, J.M., Rodriguez, R.E., Blazquez, E. 1994. Changes in arterial blood pressure and heart rate induced by glucagon-like peptide-1-(7-36) amide in rats. Am J Physiol 266:E459-466.

[32] Barragan, J.M., Rodriguez, R.E., Eng, J., Blazquez, E. 1996. Interactions of exendin-(9-39) with the effects of glucagon-like peptide-1-(7-36) amide and of exendin-4 on arterial blood pressure and heart rate in rats. Regul Pept 67:63-68.

[33] Barragan, J.M., Eng, J., Rodriguez, R., Blazquez, E. 1999. Neural contribution to the effect of glucagon-like peptide-1-(7-36) amide on arterial blood pressure in rats. Am J Physiol 277:E784-791.

[34] Griffioen, K.J., Wan, R., Okun, E., Wang, X., Lovett-Barr, M.R., Li, Y., et al. 2011. GLP-1 receptor stimulation depresses heart rate variability and inhibits neurotransmission to cardiac vagal neurons. Cardiovasc Res 89:72-78.

[35] Yamamoto, H., Lee, C.E., Marcus, J.N., Williams, T.D., Overton, J.M., Lopez, M.E., et al. 2002. Glucagon-like peptide-1 receptor stimulation increases blood pressure and heart rate and activates autonomic regulatory neurons. J Clin Invest 110:43-52.

[36] Gardiner, S.M., March, J.E., Kemp, P.A., Bennett, T. 2006. Mesenteric vasoconstriction and hindquarters vasodilatation accompany the pressor actions of exendin-4 in conscious rats. J Pharmacol Exp Ther 316:852-859.

[37] Kim, M., Platt, M.J., Shibasaki, T., Quaggin, S.E., Backx, P.H., Seino, S., et al. 2013. GLP-1 receptor activation and Epac2 link atrial natriuretic peptide secretion to control of blood pressure. Nat Med 19:567-575.

[38] Hirata, K., Kume, S., Araki, S., Sakaguchi, M., Chin-Kanasaki, M., Isshiki, K., et al. 2009. Exendin-4 has an anti-hypertensive effect in salt-sensitive mice model. Biochem Biophys Res Commun 380:44-49.

[39] Yu, M., Moreno, C., Hoagland, K.M., Dahly, A., Ditter, K., Mistry, M., et al. 2003. Antihypertensive effect of glucagon-like peptide 1 in Dahl salt-sensitive rats. J Hypertens 21:1125-1135.

[40] Edwards, C.M., Edwards, A.V., Bloom, S.R. 1997. Cardiovascular and pancreatic

endocrine responses to glucagon-like peptide-1(7-36) amide in the conscious calf. Exp Physiol 82:709-716.

[41] Ussher, J.R., Drucker, D.J. 2014. Cardiovascular actions of incretin-based therapies. Circ Res 114:1788-1803.

[42] Asmar, A., Asmar, M., Simonsen, L., Madsbad, S., Holst, J.J., Hartmann, B., et al. 2017. Glucagon-like peptide-1 elicits vasodilation in adipose tissue and skeletal muscle in healthy men. Physiol Rep 5.

[43] Asmar, M., Arngrim, N., Simonsen, L., Asmar, A., Nordby, P., Holst, J.J., et al. 2016. The blunted effect of glucose-dependent insulinotropic polypeptide in subcutaneous abdominal adipose tissue in obese subjects is partly reversed by weight loss. Nutr Diabetes 6:e208.

[44] Asmar, M., Simonsen, L., Arngrim, N., Holst, J.J., Dela, F., Bulow, J. 2014. Glucosedependent insulinotropic polypeptide has impaired effect on abdominal, subcutaneous adipose tissue metabolism in obese subjects. Int J Obes (Lond) 38:259-265.

[45] Asmar, M., Simonsen, L., Asmar, A., Holst, J.J., Dela, F., Bulow, J. 2016. Insulin Plays a Permissive Role for the Vasoactive Effect of GIP Regulating Adipose Tissue Metabolism in Humans. J Clin Endocrinol Metab 101:3155-3162.

[46] Asmar, M., Simonsen, L., Madsbad, S., Stallknecht, B., Holst, J.J., Bulow, J. 2010. Glucose-dependent insulinotropic polypeptide may enhance fatty acid re-esterification in subcutaneous abdominal adipose tissue in lean humans. Diabetes 59:2160-2163.

[47] Mannucci, E., Monami, M. 2017. Cardiovascular Safety of Incretin-Based Therapies in Type 2 Diabetes: Systematic Review of Integrated Analyses and Randomized Controlled Trials. Adv Ther 34:1-40.

[48] Chai, W., Dong, Z., Wang, N., Wang, W., Tao, L., Cao, W., et al. 2012. Glucagon-like peptide 1 recruits microvasculature and increases glucose use in muscle via a nitric oxidedependent mechanism. Diabetes 61:888-896.

[49] Asmar, A., Cramon, P.K., Simonsen, L., Asmar, M., Sorensen, C.M., Madsbad, S., et al. 2019. Extracellular fluid volume expansion uncovers a natriuretic action of GLP-1: a functional GLP-1-renal axis in man. J Clin Endocrinol Metab.

[50] Guyton, A.C., Coleman, T.G., Granger, H.J. 1972. Circulation: overall regulation. Annu Rev Physiol 34:13-46.

[51] Ivy, J.R., Bailey, M.A. 2014. Pressure natriuresis and the renal control of arterial blood pressure. J Physiol 592:3955-3967.

[52] Crajoinas, R.O., Oricchio, F.T., Pessoa, T.D., Pacheco, B.P., Lessa, L.M., Malnic, G., et al. 2011. Mechanisms mediating the diuretic and natriuretic actions of the incretin hormone glucagon-like peptide-1. Am J Physiol Renal Physiol 301:F355-363.

[53] Gutzwiller, J.P., Tschopp, S., Bock, A., Zehnder, C.E., Huber, A.R., Kreyenbuehl, M., et al. 2004. Glucagon-like peptide 1 induces natriuresis in healthy subjects and in insulinresistant obese men. J Clin Endocrinol Metab 89:3055-3061.

[54] Lovshin, J.A., Barnie, A., DeAlmeida, A., Logan, A., Zinman, B., Drucker, D.J. 2015. Liraglutide promotes natriuresis but does not increase circulating levels of atrial natriuretic peptide in hypertensive subjects with type 2 diabetes. Diabetes Care 38:132-139.

展开阅读全文

页面更新:2024-05-17

标签:激动剂   内皮   小鼠   心率   心肌   征程   心血管   诱导   损伤   血管   血压   大鼠   细胞   心脏   作用   功能

1 2 3 4 5

上滑加载更多 ↓
推荐阅读:
友情链接:
更多:

本站资料均由网友自行发布提供,仅用于学习交流。如有版权问题,请与我联系,QQ:4156828  

© CopyRight 2020-2024 All Rights Reserved. Powered By 71396.com 闽ICP备11008920号-4
闽公网安备35020302034903号

Top