Linux-0.11 kernel目录进程管理sched.c详解

sched.c主要功能是负责进程的调度,其最核心的函数就是schedule。除schedule以外, sleep_on和wake_up也是相对重要的函数。

schedule

void schedule(void)

schedule函数的基本功能可以分为两大块, 第一块是检查task中的报警信息和信号, 第二块则是进行任务的调度

在第一块中,首先从任务数组的尾部任务开始,检查alarm是否小于当前系统滴答值,如果小于则代表alarm时间已经到期。将进程的signal中的SIGALARM位置1。

接着就看如果检查进程的信号中如果处理BLOCK位以外还有别的信号,并且如果任务处于可中断状态,则将任务置为就绪状态。

int i,next,c;
struct task_struct ** p;

for(p = &LAST_TASK ; p > &FIRST_TASK ; --p)
    if (*p) {
        if ((*p)->alarm && (*p)->alarm < jiffies) { //如果设置了任务定时的值alarm, 并且已经过期
                (*p)->signal |= (1<<(SIGALRM-1)); //将信号的SIGALARM位置为1
                (*p)->alarm = 0;
            }
        if (((*p)->signal & ~(_BLOCKABLE & (*p)->blocked)) &&
        (*p)->state==TASK_INTERRUPTIBLE)//如果信号位图中除了被阻塞的信号外还有其他信号, 并且任务处于可中断状态
            (*p)->state=TASK_RUNNING; //修改任务的状态为就绪态
    }

第二块的代码就是任务调度的核心代码。

这里会从任务数组的尾部任务开始进行遍历,从所有任务从选取counter值最大的任务作为下一个运行的任务去执行。

while (1) {
	c = -1;
	next = 0;
	i = NR_TASKS;
	p = &task[NR_TASKS];//从最后一个任务开始
	while (--i) { //遍历所有的task, 取出其中counter最大的task
		if (!*--p)
			continue;
		if ((*p)->state == TASK_RUNNING && (*p)->counter > c)//取出所有任务中counter值最大的任务作为下一个任务
			c = (*p)->counter, next = i;
	}
	if (c) break;
	//如果当前没有RUNNING状态的任务的counter可以大于-1,那么则去更新counter的值,counter = counter/2 + priority
	for(p = &LAST_TASK ; p > &FIRST_TASK ; --p)
		if (*p)
			(*p)->counter = ((*p)->counter >> 1) +
					(*p)->priority;//更新counter值 counter = counter/2 + priority
}
//切换任务执行next
switch_to(next);

show_task

void show_task(int nr,struct task_struct * p)

该函数的作用是显示任务序号为nr的进程的pid,进程状态以及内核栈剩余的大小。

int i,j = 4096-sizeof(struct task_struct);

printk("%d: pid=%d, state=%d, ",nr,p->pid,p->state);
i=0;

此时j指向PCB所在内存页的顶部, i指向task_struct结构体的下一个字节。下面这段代码的所用实际就是统计内核栈中空闲大小。

show_task

while (i

show_stat

void show_stat(void)

该函数内部调用show_task函数,实际上就是遍历task数组, 调用show_stat函数显示进程相关信息。

int i;

for (i=0;i

math_state_restore

void math_state_restore()

该函数的作用是将当前协处理器内容保存到老协处理器状态数组中,并将当前任务的协处理器内容加载进协处理器。

sys_pause

int sys_pause(void)

该函数是pause的系统调用。该函数会将当前任务的状态修改为可中断的状态, 并调用schedule函数去进行进程的调度。

调用pause函数的进程会进入睡眠状态, 直到收到一个信号。

current->state = TASK_INTERRUPTIBLE;
schedule();

sleep_on

void sleep_on(struct task_struct **p)

该函数的作用是将当前的task置为不可中断的等待状态, 直到被wake_up唤醒再继续执行。入参p是等待任务队列的头指针。通过p指针和tmp变量将等待的任务串在了一起。

sleep_on示意图

该函数首先对一些异常情况进行了处理他, 例如p是空指针。或者当前task是任务0。

struct task_struct *tmp;

// 若指针无效,则退出。(指针所指的对象可以是NULL,但指针本身不会为0)。
if (!p)
	return;
if (current == &(init_task.task))	// 如果当前任务是任务0,则死机(impossible!)。
	panic ("task[0] trying to sleep");

接着让当前等待任务的头指针指向当前任务。并将当前任务修改为不可中断的等待状态。进行调用schedule函数让操作系统切换其他任务执行。

tmp = *p;
*p = current;
current->state = TASK_UNINTERRUPTIBLE;
schedule();	

当程序从schedule()返回继续执行时,说明任务已经被显式的wake_up,如果此时还有其他进程仍然在等待,那么也一同唤醒。

因为任务都在等待同样的资源, 那么当资源可用的时候, 就可以唤醒所有等待的任务。

if (tmp)			// 若还存在等待的任务,则也将其置为就绪状态(唤醒)。
	tmp->state = 0;

interruptible_sleep_on

void interruptible_sleep_on (struct task_struct **p)

该函数与sleep_on类似,但是该函数会将任务的状态修改为可中断的等待状态, 而sleep_on则是将任务修改为不可中断的等待状态。因此通过interruptible_sleep_on而等待的task是可以被信号唤醒的。 而通过sleep_on而等待的task是不会被信号唤醒的,只能通过wake_up函数唤醒。

interruptible_sleep_on示意图

下面这段代码与sleep_on并无太大区别, 只是将进程的状态修改为可中断的等待状态。

	struct task_struct *tmp;

	if (!p)
		return;
	if (current == &(init_task.task))
		panic ("task[0] trying to sleep");
	tmp = *p;
	*p = current;
repeat:
	current->state = TASK_INTERRUPTIBLE;
	schedule ();

由于任务是可以被信号唤醒的,因此下面需要判断唤醒的任务是否是等待任务队列的头节点。如果不是则需要等待其他任务。

if (*p && *p != current)
{
	(**p).state = 0;
	goto repeat;
}

下面一句代码有误,应该是*p = tmp,让队列头指针指向其余等待任务,否则在当前任务之前插入 等待队列的任务均被抹掉了

*p = NULL;
if (tmp)
	tmp->state = 0;

wake_up

void wake_up(struct task_struct **p)

该函数的作用就是唤醒某一个任务。其用于唤醒p指向的等待队列中的任务。

if (p && *p)
{
	(**p).state = 0;		// 置为就绪(可运行)状态。
	*p = NULL;
}

ticks_to_floppy_on

int ticks_to_floppy_on(unsigned int nr)

该函数指定软盘到正常运转状态所需延迟滴答数(时间)。

floppy_on

void floppy_on(unsigned int nr)

该函数等待指定软驱马达启动所需时间。

floppy_off

void floppy_off(unsigned int nr)

关闭相应的软驱马达停转定时器3s。

moff_timer[nr]=3*HZ;

do_floppy_timer

void do_floppy_timer(void)

如果马达启动定时到则唤醒进程。

if (mon_timer[i]) {
	if (!--mon_timer[i])
		wake_up(i+wait_motor);

如果马达停转定时到期则复位相应马达启动位,并更新数字输出到寄存器。

else if (!moff_timer[i]) {
	current_DOR &= ~mask;
	outb(current_DOR,FD_DOR);

add_timer

add_timer(long jiffies, void (*fn)(void))
```、
该函数的作用是设置定时值和相应的处理函数。

如果定时的值小于0, 那么立即调用处理函数。
```c
if (jiffies <= 0)
	(fn)();

如果定时的值大于0, 那么首先取timer_list数组中寻找一个位置,将该位置上的滴答数设置为jiffies,将该位置上的fn设置为入参fn。并让next_timer指向它。

for (p = timer_list ; p < timer_list + TIME_REQUESTS ; p++)
	if (!p->fn)
		break;
if (p >= timer_list + TIME_REQUESTS)
	panic("No more time requests free");
p->fn = fn;
p->jiffies = jiffies;
p->next = next_timer;
next_timer = p;

下面这段代码的作用是将刚刚插入链表中的timer移动的合适的位置。

由于next_timer这个链表上的jiffies是一个相对值,即相对于前面一个timer还有多久到期。因此上面步骤的timer也需要进行转换。

timer移动示意图


while (p->next && p->next->jiffies < p->jiffies) {
	p->jiffies -= p->next->jiffies;//减去下一个timer的jiffies
	fn = p->fn;//将当前的fn保存给临时变量
	p->fn = p->next->fn;//将当前的fn设置为下一个timer的fn
	p->next->fn = fn;//将下一个timer的fn设置为临时变量fn
	jiffies = p->jiffies;//将jiffies保存给一个临时变量
	p->jiffies = p->next->jiffies;//将当前的jiffies设置为下一个timer的jiffies
	p->next->jiffies = jiffies;//将下一个timer的jiffies设置为当前的jiffies
	p = p->next;
	//这一步骤实际上将p向后挪动到合适的位置, 并把jiffies转化成相对值。
}

do_timer

void do_timer(long cpl)

该函数是时钟中断的处理函数。其在system_call.s中的timer_interrupt函数中被调用。

参数cpl表示的是当前的特权级, 0表示时钟中断发生时,当前运行在内核态,3表示时钟中断发生时,当前运行在用户态。

下面的代码根据cpl的值将进程PCB中的utime和stime进行修改。如果cpl为0,则增加stime(supervisor time), 如果cpl为3, 则增加utime。

if (cpl)
	current->utime++;
else
	current->stime++;

下面对定时器的链表进行遍历。 将链表的第一个定时器的滴答数减1。如果滴答数已经等于0, 代表该定时器已经到期,那么需要调用相应的处理程序进行处理。

if (next_timer) {
	next_timer->jiffies--;
	while (next_timer && next_timer->jiffies <= 0) {
		void (*fn)(void);
		
		fn = next_timer->fn;
		next_timer->fn = NULL;
		next_timer = next_timer->next;
		(fn)();
	}
}

下面代码则是将当前运行的进程的时间片减去1,如果此时进程时间片没有用完,该函数则返回。 如果此时进程时间已经用完,则将时间片设置为0。并且如果此时cpl表明中断发生用户态,那么还将会触发进程的调度。

if ((--current->counter)>0) return;
current->counter=0;

sys_alarm

int sys_alarm(long seconds)

该函数用于设置报警值

jiffies是指的是系统开机到目前经历的滴答数。

current->alarm的单位也是系统滴答数。

因此(current->alarm - jiffies) /100 就代表就是当前的定时器还剩下多少秒。

而设置alarm值则需要加上系统当前的滴答数据jiffies, 如下图所示:

sys_alarm


sys_getpid

int sys_getpid(void)

该函数用于获取进程的pid。

sys_getppid

int sys_getppid(void)

该函数用于获取父进程的pid。

sys_getuid

int sys_getuid(void)

该函数用于获取用户的uid。

sys_geteuid

int sys_geteuid(void)

该函数用于获取用户的有效id(euid)。

sys_getgid

int sys_getgid(void)

获取组和id号(gid)。

sys_getegid

int sys_getegid(void)

取有效的组id(egid)

sys_nice

int sys_nice(long increment)

该函数的作用是降低进程在调度时的优先级。

sched_init

void sched_init(void)

该函数的作用是初始化进程调度模块。

首先在gdt表中设置任务0的tss和ldt值。接着对其他任务的tss和ldt进行初始化。

set_tss_desc(gdt+FIRST_TSS_ENTRY,&(init_task.task.tss));
set_ldt_desc(gdt+FIRST_LDT_ENTRY,&(init_task.task.ldt));
p = gdt+2+FIRST_TSS_ENTRY;
for(i=1;ia=p->b=0;
	p++;
	p->a=p->b=0;
	p++;
}

显式地将任务0的tss加载到寄存器tr中, 显式地将任务0的ldt加载到ldtr中。

ltr(0);
lldt(0);

下面的代码用于初始化8253定时器。通道0,选择工作方式3,二进制计数方式。

outb_p(0x36,0x43);		/* binary, mode 3, LSB/MSB, ch 0 */
outb_p(LATCH & 0xff , 0x40);	/* LSB */
outb(LATCH >> 8 , 0x40);	/* MSB */

设置时钟中断处理程序的处理函数, 设置系统调用的中断处理函数。

set_intr_gate(0x20,&timer_interrupt);
outb(inb_p(0x21)&~0x01,0x21);
set_system_gate(0x80,&system_call);

页面更新:2024-02-17

标签:进程   定时器   队列   马达   指针   详解   函数   信号   状态   作用   代码   目录

1 2 3 4 5

上滑加载更多 ↓
Top