纯计算ACS Catal.: 三原子金属团簇催化NRR

2022年11月25日,ACS Catal.在线发表了中科院化学所骆智训研究员课题组的研究论文,题目为《On the Nature of Three-Atom Metal Cluster Catalysis for N2 Reduction to Ammonia》。

催化氮气(N2)活化和还原合成氨一直是人们研究的热点。团簇修饰催化剂因其独特的活性位点和最大的协同效应被认为是很有前景的N2活化催化剂。然而,金属团簇本身的性质还没有被完全揭示出来。在此研究中,作者报道了第三和第四周期元素中所有20种过渡金属的三原子金属团簇(three-atom metal cluster, M3)的N2活化和还原。通过考虑三个关键过程来评估这些M3团簇的催化作用,包括N2分解、氢化和NH3脱附。与TMII和TMIII团簇(即6B-8B和1B-2B)相比,M3团簇(3B-5B)的TMI系列能够自发地支持N2分解。根据这三个标准,确定Y3、Sc3、Zr3和Nb3为氨合成的合格候选者。这些团簇具有较好的空穴位点N2吸附和较强的轨道杂化,金属的d轨道电子对N2的π*和π/σ轨道有着反馈作用(backdonation)。采用石墨烯支撑的Y3和Nb3团簇(Y3/G和Nb3/G)对氨合成进行了进一步研究,表明这种M3团簇具有优异的活性和潜在的应用价值。该工作验证了三原子团簇催化的有效性,并指导了高效催化剂的设计。

图1 N2吸附结构和差分电荷密度

图2 N2分解的吉布斯自由能变化

图3 2N*加氢过程

图4 NRR的反应路径

图5 PDOS、COHP和分子轨道能级

图6 N2分解过渡态、加氢反应势垒和NH3脱附能

图7 三原子金属团簇结构、N2吸附差分电荷密度和AIMD

图8 NRR的反应路径

论文链接

Cui, C., Zhang, H., Cheng, R. et al. On the Nature of Three-Atom Metal Cluster Catalysis for N2 Reduction to Ammonia. ACS Catal.,2022, 12, 14964-14975. https://doi.org/10.1021/acscatal.2c04146

【其他相关文献】

[1] Liu, J., Ma, X., Li, Y. et al. Heterogeneous Fe3 single-cluster catalyst for ammonia synthesis via an associative mechanism. Nat. Commun.,2018, 9, 1610. https://doi.org/10.1038/s41467-018-03795-8

[2] Li, X., Li, Q., Cheng, J. et al. Conversion of Dinitrogen to Ammonia by FeN3‑Embedded Graphene. J. Am. Chem. Soc.,2016, 138, 8706−8709. https://doi.org/10.1021/jacs.6b04778

[3] Zhao, J. and Chen, Z. Single Mo Atom Supported on Defective Boron Nitride Monolayer as an Efficient Electrocatalyst for Nitrogen Fixation: A Computational Study. J. Am. Chem. Soc.,2017, 139, 12480−12487. https://doi.org/10.1021/jacs.7b05213

[4] Guo, X., Gu, J., Lin, S. et al. Tackling the Activity and Selectivity Challenges of Electrocatalysts toward the Nitrogen Reduction Reaction via Atomically Dispersed Biatom Catalysts. J. Am. Chem. Soc.,2020, 142, 5709−5721. https://doi.org/10.1021/jacs.9b13349

[5] Zhou, S., Yang, X., Xu, X. et al. Boron Nitride Nanotubes for Ammonia Synthesis: Activation by Filling Transition Metals. J. Am. Chem. Soc.,2020, 142, 308−317. https://doi.org/10.1021/jacs.9b10588

[6] Tang, S., Dang, Q., Liu, T. et al. Realizing a Not-Strong-Not-Weak Polarization Electric Field in Single-Atom Catalysts Sandwiched by Boron Nitride and Graphene Sheets for Efficient Nitrogen Fixation. J. Am. Chem. Soc.,2020, 142, 19308−19315. https://doi.org/10.1021/jacs.0c09527

[7] Ling, C., Zhang, Y., Li, Q. et al. New Mechanism for N2 Reduction: The Essential Role of Surface Hydrogenation. J. Am. Chem. Soc.,2019, 141, 18264−18270. https://doi.org/10.1021/jacs.9b09232

[8] Ling, C., Niu, X., Li, Q. et al. Metal-Free Single Atom Catalyst for N2 Fixation Driven by Visible Light. J. Am. Chem. Soc.,2018, 140, 14161−14168. https://doi.org/10.1021/jacs.8b07472

[9] Wu, Y., He, C. and Zhang, W. “Capture-Backdonation-Recapture” Mechanism for Promoting N2 Reduction by Heteronuclear Metal-Free Double-Atom Catalysts. J. Am. Chem. Soc.,2022, 144, 9344−9353. https://doi.org/10.1021/jacs.2c01245

展开阅读全文

页面更新:2024-03-17

标签:原子   原子团   金属   电荷   催化剂   活性   分解   密度   轨道   路径

1 2 3 4 5

上滑加载更多 ↓
推荐阅读:
友情链接:
更多:

本站资料均由网友自行发布提供,仅用于学习交流。如有版权问题,请与我联系,QQ:4156828  

© CopyRight 2020-2024 All Rights Reserved. Powered By 71396.com 闽ICP备11008920号-4
闽公网安备35020302034903号

Top