王中林院士:基于MXene/PVA水凝胶的柔性多功能摩擦纳米发电机

【摘要】

摩擦纳米发电机 (TENG) 代表了能量收集、医疗和信息技术领域的一项新兴技术。非常需要基于 TENG 的灵活、便携和自供电的电子设备,而传统柔性电极的复杂制备过程和高成本阻碍了它们的实际应用。


王中林院士:基于MXene/PVA水凝胶的柔性多功能摩擦纳米发电机


最近,广西大学物理科学与技术学院纳米能源研究中心、中国科学院北京纳米能源与系统研究所王中林院士团队输出性能和多功能的应用。MXene纳米片的掺杂促进了PVA水凝胶的交联,提高了复合水凝胶的拉伸性。MXene 纳米片还在表面形成微通道,这不仅通过改善离子传输来增强水凝胶的导电性,而且还通过流动振动电位机制产生额外的摩擦电输出。即使在单电极模式下,测得的 MH-TENG 开路电压也高达 230 VMH-TENG 可以拉伸到原始长度的 200%,并且显示出可拉伸长度和短路电压之间的单调递增关系。通过利用 MH-TENG 出色的可拉伸特性和对机械刺激的超高灵敏度,展示了在可穿戴运动监测、高精度书写笔画识别和低频机械能收集方面的应用。相关论文以题为A Flexible Multifunctional Triboelectric Nanogenerator Based on MXene/PVA Hydrogel发表在《Advanced Functional Materials》上。


【主图导读】

王中林院士:基于MXene/PVA水凝胶的柔性多功能摩擦纳米发电机

图1 MXene/PVA 水凝胶的微观结构和成分表征。a) MXene 的晶体结构示意图。b) TEM 获得的 MXene 纳米片的低倍放大图像。c)来自(b)的 MXene 纳米片的放大边缘区域。d) MXene 纳米片的 SAED 图案。e) MXene 纳米片的 EDX 图。f) 描述自愈能力的 MXene/PVA 水凝胶的照片。g) 合成的 MXene/PVA 水凝胶的示意图,显示了初级和次级交联网络。h-j) 分别为 MXene/PVA 水凝胶的 FTIR、拉曼光谱和 XRD 图案。


王中林院士:基于MXene/PVA水凝胶的柔性多功能摩擦纳米发电机

图2 MH-TENG的工作原理和输出性能。a)MH-TENG的示意结构。b)用于能量收集的单电极模式MH-TENG的工作原理示意图。c) 基于 MXene/PVA 水凝胶微通道的摩擦电机制。d)开路电压,e)短路电流,和f)不同掺杂浓度的MXene纳米片的MH-TENG的转移电荷量。g) 具有不同 MXene 掺杂浓度的 MXene/PVA 水凝胶的电阻。


王中林院士:基于MXene/PVA水凝胶的柔性多功能摩擦纳米发电机

图3 由不同拉伸状态和自供电传感器产生的输出电压,用于监测身体运动。a) 作为拉伸长度的函数的输出电压,其中插图显示了 MH-TENG 的可拉伸性。b) MH-TENG 响应手指弯曲 30°、45°、60° 和 90° 的电压信号。MH-TENG 响应 c) 手腕、d) 肘部和 e) 手指连续弯曲的电压信号。f) MH-TENG 响应实验者 2 手指弯曲的电压信号。


王中林院士:基于MXene/PVA水凝胶的柔性多功能摩擦纳米发电机

图4 MH-TENG 用于感知不同的手写细节。a) MH-TENG 表面的笔迹图示。b-e) 用于感应不同手写细节的可重复电压信号。


王中林院士:基于MXene/PVA水凝胶的柔性多功能摩擦纳米发电机

图5 用于能量收集的 MH-TENG 演示。a) 用其他材料代替 Kapton 的开路电压。b) MH-TENG 在相同工作频率下使用 1 µF 和 3.3 µF 电容器的充电行为。c) 短路电流和计算的电荷密度与外部负载电阻的关系。d) 开路电压,e) 短路电流,以及 f) 用手拍打 MH-TENG 的转移电荷量。g) MH-TENG 点亮 LED 的电路原理图。h) 与 MH-TENG 连接的 40 个 LED 的原始照片,无需拍手。i) 用手轻敲 MH-TENG 点亮 40 个 LED 的照片。


【总结】

团队制备了以 MXene/PVA 水凝胶为电极的柔性和可拉伸摩擦纳米发电机。发现MXene纳米片不仅促进了PVA水凝胶的交联,而且在水凝胶内部形成了微通道,促进了复合水凝胶的拉伸性,增强了离子传输,并通过微通道摩擦电的SVP机制诱导了额外的输出.用于 MH-TENG 的 MXene 纳米片的最佳掺杂浓度被证明为 4%。MH-TENG具有出色的可伸缩性和对机械刺激的超高灵敏度,在可穿戴自供电人体运动监测和高精度笔画识别方面具有巨大的应用潜力。此外,用于 MH-TENG 的独立摩擦电材料可以与各种材料结合,在低频机械能收集方面显示出巨大的潜力。值得一提的是,MH-TENG可降解环保,与目前倡导的环保理念相契合。


参考文献

doi.org/10.1002/adfm.202104928


版权声明:水凝胶」旨在分享学习交流高分子聚合物胶体学等领域的研究进展。编辑水平有限上述仅代表个人观点。投稿,荐稿或合作请后台联系编辑。感谢各位关注!

展开阅读全文

页面更新:2024-05-02

标签:凝胶   纳米   摩擦   机械能   电荷   交联   电极   开路   示意图   柔性   院士   浓度   弯曲   发电机   电流   电压   信号   通道   王中林

1 2 3 4 5

上滑加载更多 ↓
推荐阅读:
友情链接:
更多:

本站资料均由网友自行发布提供,仅用于学习交流。如有版权问题,请与我联系,QQ:4156828  

© CopyRight 2020-2024 All Rights Reserved. Powered By 71396.com 闽ICP备11008920号-4
闽公网安备35020302034903号

Top