Apache Flink 在京东的实践与优化


Apache Flink 在京东的实践与优化

一、业务演进和规模

1. 业务演进

京东在 2014 年基于 storm 打造了第一代流式处理平台,可以较好的满足业务对于数据处理实时性的要求。不过它有一些局限性,对于那些数据量特别大,但是对延迟却不那么敏感的业务场景,显得有些力不从心。于是我们在 2017 年引入了 Spark streaming,利用它的微批处理来应对这种业务场景。

随着业务的发展和业务规模的扩大,我们迫切需要一种兼具低延迟和高吞吐能力,同时支持窗口计算、状态和恰好一次语义的计算引擎。

Apache Flink 在京东的实践与优化

2. 业务场景

京东 Flink 服务于京东内部非常多的业务线,主要应用场景包括实时数仓、实时大屏、实时推荐、实时报表、实时风控和实时监控,当然还有其他一些应用场景。总之,实时计算的业务需求,一般都会用 Flink 进行开发。

Apache Flink 在京东的实践与优化

3. 业务规模

目前我们的 K8s 集群由 5000 多台机器组成,服务了京东内部 20 多个一级部门。目前在线的流计算任务数有 3000 多,流计算的处理峰值达到 5亿条每秒。

Apache Flink 在京东的实践与优化

二、容器化实践

下面分享一下容器化的实践。

在 2017 年,京东内部的大多数任务还是 storm 任务,它们都是跑在物理机上的,同时还有一小部分的 Spark streaming 跑在 Yarn 上。不同的运行环境导致部署和运维的成本特别高,并且在资源利用上有一定的浪费,所以我们迫切需要一个统一集群资源管理和调度系统,来解决这个问题。

经过一系列的尝试、对比和优化,我们选择了 K8s。它不仅可以解决部署运维、资源利用的一些问题,还具有云原生弹性自愈、天然容器完整隔离、更易扩展迁移等优点。于是在 2018 年初,我们开始进行容器化的升级改造。

在 2018 年的 6.18,我们只有 20% 的任务跑在 K8s 上;到了 2019 年 2 月份,已经实现了实时计算的所有任务都跑在 K8s 上。容器化后的实时计算平台经历了 6.18,双 11 多次大促,扛住了洪峰压力,运行的非常稳定。

但是,我们过去的 Flink 容器化方案是基于资源预先分配的静态方式,不能满足很多业务场景,于是我们在 2020 年也进行了一个容器化方案的升级,后面会详细介绍。

Apache Flink 在京东的实践与优化

容器化带来非常多的收益,这里主要强调三点:

我们过去的容器化方案是基于 K8s deployment 部署的 Standalone Session 集群。它需要用户在平台创建集群时,事先预估出集群所需资源,比如需要的 jobmanager 和 taskmanager 的资源规格和个数,然后平台通过 K8s 客户端向 K8s master 发出请求,来创建 jobmanager 的 deployment 和 taskmanager 的 deployment。

其中,整个集群的高可用是基于 ZK 实现;状态存储主要是存在 HDFS,有小部分存在 OSS;监控指标 (容器指标、JVM 指标、任务指标) 上报道 Prometheus,结合 Grafana 实现指标的直观展示;日志是基于我们京东内部的 Logbook 系统进行采集、存储和查询。

在实践中发现,这个方案有两点不足:

Apache Flink 在京东的实践与优化

于是我们进行了一个容器化方案的升级,实现了基于 K8s 的动态的资源分配方式。在集群创建的时候,首先我们会根据用户指定的 job manager 的数量创建 jobmanager 的 deployment;用户在提交任务的时候,我们会根据任务所需要的资源数,动态的向平台申请资源,创建 taskmanager。

在运行过程中,如果发现这个任务需要扩容,job manager 会和平台交互,进行动态扩容;而在发现资源浪费时,会进行缩容。通过这样一个方式可以很好的解决静态预分配带来的问题,并提高了资源利用率。

此处,通过平台与 K8s 交互进行资源的创建&销毁,主要基于 4 点考虑:

另外,为了兼容原有 Slot 分配策略 (按 slot 分散),在提交任务时会预估出任务所需资源并一次性申请,同时按照一定的策略进行等待。等到有足够的资源,能满足任务运行的需求时,再进行 slot 的分配。这样很大程度上可以兼容原有的 slot 分散分配策略。

Apache Flink 在京东的实践与优化

三、Flink 优化改进

下面介绍一下 Flink 的优化改进。

1、预览拓扑

在业务使用平台的过程中,我们发现有几个业务痛点:

为了解决这些问题,我们开发了预览拓扑的功能:

Apache Flink 在京东的实践与优化

下面简单介绍预览拓扑的工作流程。用户在平台提交 SQL 作业或 Jar 作业,这个作业提交之后,会生成一个算子的配置信息,再反馈到我们平台。我们平台会把整个拓扑图预览出来,然后用户就可以在线进行算子配置信息的调整。调整完之后,把调整完的配置信息重新提交到我们平台。并且,这个过程可以是连续调整的,用户调整完觉得 ok 了就可以提交任务。提交任务之后,整个在线调整的参数就生效了。

这里任务可以多次提交,如何保证前后两次提交生成算子稳定的对应关系呢?我们采用这样一个策略:如果你指定了 uidHash 或者 uid,我们就可以拿 uidHash 和 uid 作为这样一个对应关系的 Key。如果没有,我们会遍历整个拓扑图,按照广度优先的顺序,根据算子在拓扑图中的位置生成确定的唯一的 ID。拿到唯一的 ID 之后,就可以得到一个确定的关系了。

Apache Flink 在京东的实践与优化

2、背压量化

下面介绍一下我们的第二个改进,背压量化。目前观测背压有两种方式:

Apache Flink 在京东的实践与优化

针对这个问题,我们的解决方案是采集背压发生的位置、时间和次数指标,然后上报上去。将量化的背压监控指标与运行时拓扑结合起来,就可以很直观的看到背压产生的影响 (影响任务的位置、时长和次数)。

Apache Flink 在京东的实践与优化

3、文件系统支持多配置

下面介绍下文件系统支持多配置的功能。

目前在 Flink 中使用文件系统时,会使用 FileSystem.get 传入 URI,FileSystem 会将 shceme+authority 作为 key 去查找缓存的文件系统,如果不存在,根据 scheme 查找到 FileSystemFactory 调用 create 创建文件系统,返回之后就可以对文件进行操作了。不过,在平台实践过程中,经常会遇到这样的问题:

Apache Flink 在京东的实践与优化

这两个问题都涉及到如何让 Flink 的同一个文件系统支持多套配置。我们的解决方案是通过使用不同的scheme指定和隔离不同的配置。以 HDFS 支持多配置为例,如下图所示:

Apache Flink 在京东的实践与优化

我们也做了许多其它的优化和扩展,主要分为三大块。

四、未来规划

最后是未来规划。归纳为 4 点:

Apache Flink 在京东的实践与优化

展开阅读全文

页面更新:2024-03-02

标签:算子   作业   拓扑   集群   文件系统   容器   实时   场景   分配   指标   方式   业务   用户   资源   平台   科技

1 2 3 4 5

上滑加载更多 ↓
推荐阅读:
友情链接:
更多:

本站资料均由网友自行发布提供,仅用于学习交流。如有版权问题,请与我联系,QQ:4156828  

© CopyRight 2020-2024 All Rights Reserved. Powered By 71396.com 闽ICP备11008920号-4
闽公网安备35020302034903号

Top