hashMap 源码解析

问题

此次主要分析1.8的版本, 并对1.8之前的结构做对比

  1. hashMap结构
  2. hashMap put的过程
  3. hashMap 扩容的方式
  4. hashMap的并发问题
  5. 1.8版本以及1.7版本的差异

hashMap的实现原理



链表转成红黑树

  1. HashMap是一张哈希表(即数组),表中的每个元素都是键值对(Map.Entry类)。
  2. 当hash碰撞时。使用单向链表存储,新元素放在队尾
  3. 当单个链表大于8个时,转为红黑树进行存储,当链表长度小于6时,红黑树会重新变回链表
  4. 当链表数组的容量超过初始容量的0.75时,再散列将链表数组扩大2倍,把每一个链表分成奇偶两个子链表分别挂在新链表数组的散列位置,这样就减少了每个链表的长度,增加查找效率

HashMap数据结构

node结构

// Node是单向链表,它实现了Map.Entry接口
    static class Node implements Map.Entry {
        final int hash;
        final K key;
        V value;
        Node next;

        Node(int hash, K key, V value, Node next) {
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }
        // 略
    }

红黑树结构

static final class TreeNode extends LinkedHashMap.Entry {
        TreeNode parent;  // red-black tree links
        TreeNode left;
        TreeNode right;
        TreeNode prev;    // needed to unlink next upon deletion
        boolean red;
        TreeNode(int hash, K key, V val, Node next) {
            super(hash, key, val, next);
        }
        // 略

什么是红黑树

是一种平衡二叉树

  1. 节点是红色或者黑色
  2. 根节点是黑色
  3. 每个叶子的节点都是黑色的空节点
  4. 每个红色节点的两个子节点都是黑色的
  5. 从任意节点到其每个叶子的所有路径都包含相同的黑色节点

通过左旋转或右旋转满足以上规则,保证深度相同

读写过程

写入过程

public V put(K key, V value) {  
        return putVal(hash(key), key, value, false, true);  
    }  
     /** 
     * Implements Map.put and related methods 
     * 
     * @param hash hash for key 
     * @param key the key 
     * @param value the value to put 
     * @param onlyIfAbsent if true, don't change existing value 
     * @param evict if false, the table is in creation mode. 
     * @return previous value, or null if none 
     */  
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,  
                   boolean evict) {  
        Node[] tab;   
    Node p;   
    int n, i;  
        if ((tab = table) == null || (n = tab.length) == 0)  
            n = (tab = resize()).length;  
    /*如果table的在(n-1)&hash的值是空,就新建一个节点插入在该位置*/  
        if ((p = tab[i = (n - 1) & hash]) == null)  
            tab[i] = newNode(hash, key, value, null);  
    /*表示有冲突,开始处理冲突*/  
        else {  
            Node e;   
        K k;  
    /*检查第一个Node,p是不是要找的值*/  
            if (p.hash == hash &&((k = p.key) == key || (key != null && key.equals(k))))  
                e = p;  
            else if (p instanceof TreeNode)  
                e = ((TreeNode)p).putTreeVal(this, tab, hash, key, value);  
            else {  
                for (int binCount = 0; ; ++binCount) {  
        /*指针为空就挂在后面*/  
                    if ((e = p.next) == null) {  
                        p.next = newNode(hash, key, value, null);  
               //如果冲突的节点数已经达到8个,看是否需要改变冲突节点的存储结构,               
            //treeifyBin首先判断当前hashMap的长度,如果不足64,只进行  
                        //resize,扩容table,如果达到64,那么将冲突的存储结构为红黑树  
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st  
                            treeifyBin(tab, hash);  
                        break;  
                    }  
        /*如果有相同的key值就结束遍历*/  
                    if (e.hash == hash &&((k = e.key) == key || (key != null && key.equals(k))))  
                        break;  
                    p = e;  
                }  
            }  
    /*就是链表上有相同的key值*/  
            if (e != null) { // existing mapping for key,就是key的Value存在  
                V oldValue = e.value;  
                if (!onlyIfAbsent || oldValue == null)  
                    e.value = value;  
                afterNodeAccess(e);  
                return oldValue;//返回存在的Value值  
            }  
        }  
        ++modCount;  
     /*如果当前大小大于门限,门限原本是初始容量*0.75*/  
        if (++size > threshold)  
            resize();//扩容两倍  
        afterNodeInsertion(evict);  
        return null;  
    }

HashMap的键值存储

我们给 put() 方法传递键和值时,我们先对键调用 hashCode() 方法,计算并返回 hashCode,然后使用HashMap内部的hash算法,将hashCode计算为表中的具体位置,找到 Map 数组的 bucket 位置来储存 Node 对象。

解决Hash碰撞

如果hash到的数组位置已存在对象,即为Hash碰撞。JDK使用拉链法解决Hash碰撞问题。
即以原有的Node节点为基础,构造链表。将新的Node节点挂在后面。

链表过长导致的复杂度问题

HashMap的查询操作最佳时间复杂度是O(1),但是当表中的某个链表过长时,查询该链表上的元素时间复杂度为O(n)。JDK1.8中解决了该问题,当HashMap中某链表长度大于8时,链表会重构为红黑树,这样,HashMap的最坏时间复杂度为O(n)。同理,为了不必要的消耗,当链表长度小于6时,红黑树会重新变回链表

读取过程

public V get(Object key) {  
        Node e;  
        return (e = getNode(hash(key), key)) == null ? null : e.value;  
    }  
      /** 
     * Implements Map.get and related methods 
     * 
     * @param hash hash for key 
     * @param key the key 
     * @return the node, or null if none 
     */  
    final Node getNode(int hash, Object key) {  
        Node[] tab;//Entry对象数组  
    Node first,e; //在tab数组中经过散列的第一个位置  
    int n;  
    K k;  
    /*找到插入的第一个Node,方法是hash值和n-1相与,tab[(n - 1) & hash]*/  
    //也就是说在一条链上的hash值相同的  
        if ((tab = table) != null && (n = tab.length) > 0 &&(first = tab[(n - 1) & hash]) != null) {  
    /*检查第一个Node是不是要找的Node*/  
            if (first.hash == hash && // always check first node  
                ((k = first.key) == key || (key != null && key.equals(k))))//判断条件是hash值要相同,key值要相同  
                return first;  
      /*检查first后面的node*/  
            if ((e = first.next) != null) {  
                if (first instanceof TreeNode)  
                    return ((TreeNode)first).getTreeNode(hash, key);  
                /*遍历后面的链表,找到key值和hash值都相同的Node*/  
                do {  
                    if (e.hash == hash &&  
                        ((k = e.key) == key || (key != null && key.equals(k))))  
                        return e;  
                } while ((e = e.next) != null);  
            }  
        }  
        return null;  
    }

get(key)方法时获取key的hash值,计算hash&(n-1)得到在链表数组中的位置first=tab[hash&(n-1)],先判断first的key是否与参数key相等,不等就遍历后面的链表找到相同的key值返回对应的Value值即可

HashMap的扩容

 final Node[] resize() {  
       Node[] oldTab = table;  
       int oldCap = (oldTab == null) ? 0 : oldTab.length;  
       int oldThr = threshold;  
       int newCap, newThr = 0;  
      
/*如果旧表的长度不是空*/  
       if (oldCap > 0) {  
           if (oldCap >= MAXIMUM_CAPACITY) {  
               threshold = Integer.MAX_VALUE;  
               return oldTab;  
           }  
/*把新表的长度设置为旧表长度的两倍,newCap=2*oldCap*/  
           else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&  
                    oldCap >= DEFAULT_INITIAL_CAPACITY)  
      /*把新表的门限设置为旧表门限的两倍,newThr=oldThr*2*/  
               newThr = oldThr << 1; // double threshold  
       }  
    /*如果旧表的长度的是0,就是说第一次初始化表*/  
       else if (oldThr > 0) // initial capacity was placed in threshold  
           newCap = oldThr;  
       else {               // zero initial threshold signifies using defaults  
           newCap = DEFAULT_INITIAL_CAPACITY;  
           newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);  
       }  
      
      
      
       if (newThr == 0) {  
           float ft = (float)newCap * loadFactor;//新表长度乘以加载因子  
           newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?  
                     (int)ft : Integer.MAX_VALUE);  
       }  
       threshold = newThr;  
       @SuppressWarnings({"rawtypes","unchecked"})  
/*下面开始构造新表,初始化表中的数据*/  
       Node[] newTab = (Node[])new Node[newCap];  
       table = newTab;//把新表赋值给table  
       if (oldTab != null) {//原表不是空要把原表中数据移动到新表中      
           /*遍历原来的旧表*/        
           for (int j = 0; j < oldCap; ++j) {  
               Node e;  
               if ((e = oldTab[j]) != null) {  
                   oldTab[j] = null;  
                   if (e.next == null)//说明这个node没有链表直接放在新表的e.hash & (newCap - 1)位置  
                       newTab[e.hash & (newCap - 1)] = e;  
                   else if (e instanceof TreeNode)  
                       ((TreeNode)e).split(this, newTab, j, oldCap);  
/*如果e后边有链表,到这里表示e后面带着个单链表,需要遍历单链表,将每个结点重*/  
                   else { // preserve order保证顺序  
                ////新计算在新表的位置,并进行搬运  
                       Node loHead = null, loTail = null;  
                       Node hiHead = null, hiTail = null;  
                       Node next;  
                      
                       do {  
                           next = e.next;//记录下一个结点  
          //新表是旧表的两倍容量,实例上就把单链表拆分为两队,  
             //e.hash&oldCap为偶数一队,e.hash&oldCap为奇数一对  
                           if ((e.hash & oldCap) == 0) {  
                               if (loTail == null)  
                                   loHead = e;  
                               else  
                                   loTail.next = e;  
                               loTail = e;  
                           }  
                           else {  
                               if (hiTail == null)  
                                   hiHead = e;  
                               else  
                                   hiTail.next = e;  
                               hiTail = e;  
                           }  
                       } while ((e = next) != null);  
                      
                       if (loTail != null) {//lo队不为null,放在新表原位置  
                           loTail.next = null;  
                           newTab[j] = loHead;  
                       }  
                       if (hiTail != null) {//hi队不为null,放在新表j+oldCap位置  
                           hiTail.next = null;  
                           newTab[j + oldCap] = hiHead;  
                       }  
                   }  
               }  
           }  
       }  
       return newTab;  
   }

扩容时机

当size超过阈值(数组长度负载因子*)时,即开始扩容,HashMap的负载因子为0.75。

为何要数组未满就扩容

避免频繁出现Hash碰撞,造成拉链过长(红黑树过长)。这样会导致查询复杂度频繁出现最坏情况

扩容过程

创建原本数组容量*2的新数组,将节点从原本的数组中迁移过去。

jdk1.7的问题

  1. put()时,HashMap会先遍历table数组,用hash值和equals()判断数组中是否存在完全相同的key对象, 如果这个key对象在table数组中已经存在,就用新的value代替老的value。如果不存在,就创建一个新的Entry对象添加到table[ i ]处。如果该table[ i ]已经存在其他元素,那么新Entry对象将会储存在bucket链表的表头,通过next指向原有的Entry对象,形成链表结构(hash碰撞解决方案)
  2. 扩容时,将原先table的元素全部移到newTable里面,重新计算hash,然后再重新根据hash分配位置。
    问题点:两个线程都发现HashMap需要重新调整大小了,它们会同时试着调整大小。在调整大小的过程中,存储在链表中的元素的次序会反过来,因为移动到新的bucket位置的时候,HashMap并不会将元素放在链表的尾部,而是放在头部,这是为了避免尾部遍历(tail traversing)。如果条件竞争发生了,那么就死循环了

为什么线程不安全

HashMap 在并发时可能出现的问题主要是两方面:

如果多个线程同时使用 put 方法添加元素,而且假设正好存在两个 put 的 key 发生了碰撞(根据 hash 值计算的 bucket 一样),那么根据 HashMap 的实现,这两个 key 会添加到数组的同一个位置,这样最终就会发生其中一个线程 put 的数据被覆盖

如果多个线程同时检测到元素个数超过数组大小 * loadFactor,这样就会发生多个线程同时对 Node 数组进行扩容,都在重新计算元素位置以及复制数据,但是最终只有一个线程扩容后的数组会赋给 table,也就是说其他线程的都会丢失,并且各自线程 put 的数据也丢失

展开阅读全文

页面更新:2024-03-25

标签:门限   复杂度   遍历   数组   节点   线程   源码   长度   元素   对象   位置

1 2 3 4 5

上滑加载更多 ↓
推荐阅读:
友情链接:
更多:

本站资料均由网友自行发布提供,仅用于学习交流。如有版权问题,请与我联系,QQ:4156828  

© CopyRight 2020-2024 All Rights Reserved. Powered By 71396.com 闽ICP备11008920号-4
闽公网安备35020302034903号

Top