大数据文摘出品
刚刚,著名数学家陶哲轩(Terence Tao),在个人博客上分享了自己作为研究者,对美国基础科学经费锐减的切身体会与反思。
文中,陶哲轩直言自己已陷入经费困境:“现在已经没有足够的资源投入到长期项目中。”
他坦言,原本依靠NSF(美国国家科学基金会)支持,能够专心科研、带学生、组织学术交流,但随着基础科研资金被大幅削减,如今连维持基本研究都捉襟见肘,许多创新尝试不得不依靠极少数志愿者苦撑。
陶哲轩还感叹,如果没有基础研究的长期投入,许多关键技术进步都会被严重延误,甚至根本不会出现。
他指出,削减基础研究投入,可能节省了几分钱,但却在不知不觉中削弱了科技创新的根基,让解决现实重大难题变得遥不可及。尤其是对年轻科研人才的支持,关乎下一代创新者的成长与国家的长远竞争力。
以下为陶哲轩原文,大数据文摘编译:
美国国家科学基金会(NSF)在 2025 年把基础科学经费削减了一半以上,明年的预算草案也计划继续大幅压缩。以数学科学为例,截至 5 月 21 日,今年该领域仅获资助 3200 万美元,而过去十年的年均水平为 1.13 亿美元。换算到人均,美国 3.4 亿人口意味着,每位美国人一年在基础数学研究上的投入还不到 0.22 美元,而十年平均值是 0.80 美元。
在我的职业生涯里,我所获得的资助只是这 0.80 美元中的极小一部分,却足以让我在暑期专心研究、邀请学者来系里演讲,并为研究生提供支持。目前,我还能依靠手头这笔金额并不算高的 NSF 项目(编号 2347850)勉强维持这些活动;但要启动新的长期课题,资源已捉襟见肘。例如,我正在尝试用新技术重塑数学研究流程,目前只能靠自己和几位无偿线上志愿者推进。为了把项目从“概念验证”扩展到可持续规模,我正向多方争取经费,但预计竞争会异常激烈。
基础数学研究所关注的问题,往往距离现实应用相当遥远,但它们在很大程度上以“隐形”的方式,持续为更广泛的科研生态系统注入动力,最终间接促成实际应用的产生。
比如“球体如何在空间中最紧密地堆叠”这个问题,最早由开普勒在1611年提出。从实际操作角度来看,这个问题的答案其实早已为蔬果摊贩们所熟知:只需要按照六角密堆积的方式码放即可。但对于数学家而言,真正“证明”这种堆叠方式是最优的,却花费了数十年的努力,直到2012年才有了形式化验证的严密证明。
除了在三维欧几里得空间中探讨球体堆叠,数学家还把这一问题推广到更高维空间。比如,在八维和二十四维空间中的球体堆叠问题,近年因Viazovska的突破性工作而备受关注。还有人在有限域等更离散的空间中研究类似的堆叠问题。这类源自好奇心的纯理论探索,往往表面上看不到任何直接用途——毕竟现实世界里并没有人需要“堆叠八维空间里的橙子”。
当手机逐渐普及,通信行业就面临了一个全新难题:如何让无线频谱中的多个手机信号高效编码,既互不干扰,又能最大化利用带宽。令人意想不到的是,数学家们在研究离散空间和高维空间球体堆叠时发展出的许多方法和洞见,最终成了破解这一问题的重要工具。这不仅体现在“正面意义”上:比如用于设计更高效的信号编码方案;同样也体现在“负面意义”上,即这些理论帮助我们明确了编码效率的上限,让工程师们知道哪些方向是注定行不通的,避免在数学上已被排除的方案上浪费时间和资源。
(顺带一提,开普勒猜想正式证明的成功也激发并推动了更多协作式的形式化证明项目,包括我个人在该领域的一些尝试,尽管这些项目本身与球体堆叠未必直接相关。)
这些对技术进步的贡献,常常是间接而隐晦的。但如果没有这些基础研究,许多关键技术突破可能会被极大延缓,甚至根本不会出现。对基础研究的资金削减,尤其会影响到新一代科研人才的成长。虽然短期内似乎节省了一点经费,但长期来看,这却大大削弱了我们解决现实重大技术难题的能力。
注:头图AI生成
更新时间:2025-05-29
本站资料均由网友自行发布提供,仅用于学习交流。如有版权问题,请与我联系,QQ:4156828
© CopyRight 2020-=date("Y",time());?> All Rights Reserved. Powered By 71396.com 闽ICP备11008920号
闽公网安备35020302034903号