爱因斯坦的广义相对论揭示了一个动态而奇异的宇宙

英语科技类阅读系列第3篇 奇异的宇宙(上)

关注 头条+西瓜+抖音号: “杨老师STEAM教育” 通过英语学科普

Category: Cosmology 宇宙学

Text: 2579 words (正文英语单词为2579个,分上下篇发表)


爱因斯坦的广义相对论揭示了一个动态而奇异的宇宙

Title: Einstein’s theory of general relativity unveiled a dynamic and bizarre cosmos

标题: 爱因斯坦的广义相对论揭示了一个动态而奇异的宇宙

The predictions were right about black holes, gravitational waves and universe expansion

关于黑洞、引力波和宇宙膨胀的预测是正确的

Albert Einstein’s mind reinvented space and time, foretelling a universe so bizarre and grand that it has challenged the limits of human imagination. An idea born in a Swiss patent office that evolved into a mature theory in Berlin set forth a radical new picture of the cosmos, rooted in a new, deeper understanding of gravity.

阿尔伯特 爱因斯坦的思想重塑了空间和时间,预言了一个如此奇异而宏伟的宇宙,它挑战了人类想象力的极限。 一个诞生于瑞士专利局的想法在柏林演变成一个成熟的理论,提出了一幅全新的宇宙图景,植根于对引力的新的、更深入的理解。

Out was Newton’s idea, which had reigned for nearly two centuries, of masses that appeared to tug on one another. Instead, Einstein presented space and time as a unified fabric distorted by mass and energy. Objects warp the fabric of spacetime like a weight resting on a trampoline, and the fabric’s curvature guides their movements. With this insight, gravity was explained.

牛顿的想法已经统治了近两个世纪,即质量之间似乎在相互拉扯。 相反,爱因斯坦将空间和时间呈现为一个被质量和能量扭曲的统一结构。 物体扭曲时空结构,就像放在蹦床上的重物一样,织物的曲率引导它们的运动。 有了这个洞察力,引力就得到了解释。

Einstein presented his general theory of relativity at the end of 1915 in a series of lectures in Berlin. But it wasn’t until a solar eclipse in 1919 that everyone took notice. His theory predicted that a massive object — say, the sun — could distort spacetime nearby enough to bend light from its straight-line course. Distant stars would thus appear not exactly where expected. Photographs taken during the eclipse verified that the position shift matched Einstein’s prediction. “Lights all askew in the heavens; men of science more or less agog,” declared a New York Times headline.

爱因斯坦于1915年底在柏林的一系列讲座中提出了他的广义相对论。 但直到1919年的日食,才引起了所有人的注意。 他的理论预测,一个巨大的物体—比如太阳—可以扭曲附近的时空,足以使光线从直线路径弯曲。 因此,遥远的恒星不会出现在预期的地方。 在日食期间拍摄的照片证实了位置偏移与爱因斯坦的预测相符。 纽约时报的头条新闻宣称,“天上的灯都歪了; 科学界的人或多或少都很激动,”

Even a decade later, a story in Science News Letter, the predecessor of Science News, wrote of “Riots to understand Einstein theory” Apparently extra police had to be called in to control a crowd of 4,500 who “broke down iron gates and mauled each other” at the American Museum of Natural History in New York City to hear an explanation of general relativity.

甚至十年后,《科学新闻》的前身《科学新闻快报》上的一篇文章写道“理解爱因斯坦理论引发的骚乱”。 显然,在纽约市的美国自然历史博物馆,必须召集额外的警察来控制 4,500 名“打破铁门并互相殴打”的人群,以听取对广义相对论的解释。

By 1931, physicist Albert A. Michelson, the first American to win a Nobel Prize in the sciences, called the theory “a revolution in scientific thought unprecedented in the history of science.”

到1931年,第一位获得诺贝尔科学奖的美国人、物理学家阿尔伯特·A·迈克尔逊称该理论为“科学史上前所未有的科学思想革命”。

But for all the powers of pination we credit to Einstein today, he was a reluctant soothsayer. We now know that general relativity offered much more than Einstein was willing or able to see. “It was a profoundly different way of looking at the universe,” says astrophysicist David Spergel of the Simons Foundation’s Flatiron Institute in New York City, “and it had some wild implications that Einstein himself didn’t want to accept.” What’s more, says Spergel (a member of the Honorary Board of the Society for Science, publisher of Science News), “the wildest aspects of general relativity have all turned out to be true.”

但是,尽管我们今天将所有的占卜能力归功于爱因斯坦,但他是一个不情愿的占卜者。 我们现在知道广义相对论所提供的远比爱因斯坦愿意或能够看到的要多得多。 “这是一种截然不同的看待宇宙的方式,”纽约市西蒙斯基金会熨斗研究所的天体物理学家大卫·斯佩格尔说,“它有一些爱因斯坦本人不想接受的疯狂暗示。” 更重要的是,Spergel(科学协会名誉委员会成员,科学新闻出版商)说,“广义相对论最疯狂的方面都被证明是真实的。”

What had been masquerading as a quiet, static, finite place is instead a dynamic, ever-expanding arena filled with its own riot of space-bending beasts. Galaxies congregate in superclusters on scales vastly greater than anything experts had considered before the 20th century. Within those galaxies reside not only stars and planets, but also a zoo of exotic objects illustrating general relativity’s propensity for weirdness, including neutron stars, which pack a fat star’s worth of mass into the size of a city, and black holes, which pervert spacetime so strongly that no light can escape. And when these behemoths collide, they shake spacetime, blasting out ginormous amounts of energy. Our cosmos is violent, evolving and filled with science fiction–like possibilities that actually come straight out of general relativity.

原本伪装成一个安静、静态、有限的地方,实际上是一个动态的、不断扩大的竞技场,里面充满了自己的扭曲空间野兽。星系聚集在超星系团中,其规模远大于专家在 20 世纪之前所考虑的任何规模。在这些星系中不仅有恒星和行星,而且还有一个奇异物体动物园,说明广义相对论的怪异倾向,包括中子星,它将一颗胖恒星的质量打包成一个城市的大小,以及黑洞,扭曲时空如此强烈以至于没有光能逃脱。当这些庞然大物碰撞时,它们会震动时空,释放出巨大的能量。我们的宇宙是暴力的、不断发展的,充满了科幻小说般的可能性,这些可能性实际上直接来自广义相对论。

“General relativity opened up a huge stage of stuff for us to look at and try out and play with,” says astrophysicist Saul Perlmutter of the University of California, Berkeley. He points to the idea that the universe changes dramatically over its lifetime — “the idea of a lifetime of a universe at all is a bizarre concept” — and the idea that the cosmos is expanding, plus the thought that it could collapse and come to an end, and even that there might be other universes. “You get to realize that the world could be much more interesting even than we already ever imagined it could possibly be.”

加州大学伯克利分校的天体物理学家索尔·珀尔马特 (Saul Perlmutter) 说:“广义相对论为我们打开了一个巨大的舞台,让我们可以观察、尝试和玩耍。”他指出宇宙在其一生中发生了巨大变化——“宇宙一生的想法是一个奇怪的概念”——以及宇宙正在膨胀的想法,加上它可能会坍塌并最终形成的想法。一个终结,甚至可能存在其他宇宙。 “你会意识到这个世界可能比我们想象的更有趣。

General relativity has become the foundation for today’s understanding of the cosmos. But the current picture is far from complete. Plenty of questions remain about mysterious matter and forces, about the beginnings and the end of the universe, about how the science of the big meshes with quantum mechanics, the science of the very small. Some astronomers believe a promising route to answering some of those unknowns is another of general relativity’s initially underappreciated features — the power of bent light to magnify features of the cosmos.

广义相对论已成为当今理解宇宙的基础。但目前的情况还远未完成。关于神秘的物质和力量,关于宇宙的开始和结束,关于宏观科学如何与量子力学、非常小的微观科学相结合,仍有很多问题。一些天文学家认为,回答其中一些未知数的一条有希望的途径是广义相对论最初被低估的另一个特征——弯曲光放大宇宙特征的能力。

Today’s scientists continue to poke and prod at general relativity to find clues to what they might be missing. General relativity is now being tested to a level of precision previously impossible, says astrophysicist Priyamvada Natarajan of Yale University. “General relativity expanded our cosmic view, then gave us sharper focus on the cosmos, and then turned the tables on it and said, ‘now we can test it much more strongly.’ ” It’s this testing that will perhaps uncover problems with the theory that might point the way to a fuller picture.

今天的科学家继续对广义相对论进行研究,以寻找他们可能遗漏的线索。耶鲁大学的天体物理学家Priyamvada Natarajan说,广义相对论现在正以前所未有的精度进行测试。 “广义相对论扩展了我们的宇宙观,然后让我们更加专注于宇宙;然后反过来说,现在我们可以更强有力地测试它。”正是这种测试可能会发现该理论的问题,这可能会为更全面的真相指明方向。

And so, more than a century after general relativity debuted, there’s plenty left to foretell. The universe may turn out to be even wilder yet.

因此,在广义相对论首次亮相一个多世纪后,还有很多事情可以预测。宇宙可能会变得更加狂野。

Ravenous beasts 贪婪的野兽

Just over a century after Einstein unveiled general relativity, scientists obtained visual confirmation of one of its most impressive beasts. In 2019, a global network of telescopes revealed a mass warping spacetime with such fervor that nothing, not even light, could escape its snare. The Event Horizon Telescope released the first image of a black hole, at the center of galaxy.

在爱因斯坦公布广义相对论一个多世纪后,科学家们获得了其最令人印象深刻的野兽之一的视觉确认。 2019 年,一个全球望远镜网络揭示了一个巨大的时空扭曲,如此狂热,以至于没有任何东西,即使是光,也无法逃脱它的陷阱。天文望远镜(望远镜名叫视野)发布了第一张位于星系中心的黑洞图像。

爱因斯坦的广义相对论揭示了一个动态而奇异的宇宙

2019 年天文望远镜合作组织首次发布了 M87 星系中心黑洞的图像。 图像显示了被明亮的气体盘包围的怪物的影子。

“The power of an image is strong,” says Kazunori Akiyama, an astrophysicist at the MIT Haystack Observatory in Westford, Mass., who led one of the teams that created the image. “I somewhat expected that we might see something exotic,” Akiyama says. But after looking at the first image, “Oh my God,” he recalls thinking, “it’s just perfectly matching with our expectation of general relativity.”

“图像的力量是强大的,”马萨诸塞州韦斯特福德麻省理工学院干草堆天文台的天体物理学家 Kazunori Akiyama 说,他领导了创建图像的团队之一。 “我有点期待我们可能会看到一些异国情调的东西,”秋山说。但在看了第一张图片后,“我的天哪,”他回忆道,“这完全符合我们对广义相对论的期望。”

For a long time, black holes were mere mathematical curiosities. Evidence that they actually reside out in space didn’t start coming in until the second half of the 20th century. It’s a common story in the annals of physics. An oddity in some theorist’s equation points to a previously unknown phenomenon, which kicks off a search for evidence. Once the data are attainable, and if physicists get a little lucky, the search gives way to discovery.

长期以来,黑洞只是在数学意义上的好奇。直到 20 世纪下半叶,它们真正存在于太空中的证据才开始出现。这是物理学史上的一个常见故事。一些理论家方程中的一个奇怪之处指向了一个以前未知的现象,这开始了对证据的搜索。一旦可以获得数据,如果物理学家有点幸运,搜索就会让位于发现。

In the case of black holes, German physicist Karl Schwarzschild came up with a solution to Einstein’s equations near a single spherical mass, such as a planet or a star, in 1916, shortly after Einstein proposed general relativity. Schwarzschild’s math revealed how the curvature of spacetime would differ around stars of the same mass but increasingly smaller sizes — in other words, stars that were more and more compact. Out of the math came a limit to how small a mass could be squeezed. Then in the 1930s, J. Robert Oppenheimer and Hartland Snyder described what would happen if a massive star collapsing under the weight of its own gravity shrank past that critical size — today known as the “Schwarzschild radius” — reaching a point from which its light could never reach us. Still, Einstein — and most others — doubted that what we now call black holes were plausible in reality.

就黑洞而言,1916年,在爱因斯坦提出广义相对论后不久,德国物理学家卡尔·施瓦茨柴尔德 (Karl Schwarzschild) 提出了一个解决爱因斯坦方程的方法,该方程靠近单个球形质量,例如行星或恒星。 Schwarzschild 的数学揭示了时空曲率在质量相同但尺寸越来越小的恒星周围是如何不同的——换句话说,恒星越来越紧凑。数学计算得出了一个质量可以被挤压到多小的限制。然后在 1930 年代,J. Robert Oppenheimer 和 Hartland Snyder 描述了如果一颗大质量恒星在自身重力的作用下坍缩,缩小超过临界尺寸(今天称为“史瓦西半径”)时会发生什么永远无法到达我们。尽管如此,爱因斯坦——以及其他大多数人——怀疑我们现在所说的黑洞在现实中是否合理。

The term “black hole” first appeared in print in Science News Letter. It was in a 1964 story by Ann Ewing, who was covering a meeting in Cleveland of the American Association for the Advancement of Science. That’s also about the time that hints in favor of the reality of black holes started coming in.

“黑洞”一词首次出现在《科学新闻快报》上。 1964 年,Ann Ewing 报道了美国科学促进会在克利夫兰的一次会议。这也是支持黑洞现实的暗示开始出现的时候。

Just a few months later, Ewing reported the discovery of quasars — describing them in Science News Letter as “the most distant, brightest, most violent, heaviest and most puzzling sources of light and radio waves” .Though not linked to black holes at the time, quasars hinted at some cosmic powerhouses needed to provide such energy. The use of X-ray astronomy in the 1960s revealed new features of the cosmos, including bright beacons that could come from a black hole scarfing down a companion star. And the motions of stars and gas clouds near the centers of galaxies pointed to something exceedingly dense lurking within. (to be continued)

仅仅几个月后,尤因报告了类星​​体的发现——在《科学新闻快报》中将它们描述为“最遥远、最亮、最猛烈、最重和最令人费解的光和无线电波源”。虽然当时与黑洞无关,但类星体暗示需要一些宇宙动力来提供这种能量。 1960 年代 X 射线天文学的使用揭示了宇宙的新特征,包括可能来自黑洞吞噬伴星的明亮信标。星系中心附近恒星和气体云的运动指向潜伏在其中的极其密集的东西。(未完,待续)

爱因斯坦的广义相对论揭示了一个动态而奇异的宇宙

类星体(图示中的一个)非常明亮,以至于它们可以胜过它们的母星系。 尽管首次被发现时令人费解。

展开阅读全文

页面更新:2024-06-16

标签:爱因斯坦   阿尔伯特   纽约市   宇宙   广义相对论   可能会   物理学家   星系   天体   恒星   黑洞   奇异   图像   时空   质量   科学   动态

1 2 3 4 5

上滑加载更多 ↓
推荐阅读:
友情链接:
更多:

本站资料均由网友自行发布提供,仅用于学习交流。如有版权问题,请与我联系,QQ:4156828  

© CopyRight 2020-2024 All Rights Reserved. Powered By 71396.com 闽ICP备11008920号-4
闽公网安备35020302034903号

Top