一文了解生物基尼龙材料改性与应用进展

一文了解生物基尼龙材料改性与应用进展

关键词:生物基尼龙;改性;应用进展;

5472字|预计阅读时间:13分钟


尼龙——是一种具有良好力学性能、耐热性、耐磨性、耐化学溶剂性、自润滑性和一定的阻燃性的工程塑料,在汽车、电子电器、机械、轨道交通、体育器械等领域有广泛应用。


一文了解生物基尼龙材料改性与应用进展


在众多尼龙材料中,尼龙6和尼龙66的应用最为广泛。目前,这两种尼龙材料来源于石油等不可再生资源。随着全球石油资源的日益匮乏,来源于可再生资源的生物基尼龙材料受到研究者、企业和市场的广泛关注。


一文了解生物基尼龙材料改性与应用进展


生物基尼龙材料是指生产尼龙所需原料(一般 是二元酸、二元胺或者环内酰胺),利用可再生的生物质资源,如葡萄糖、纤维素、植物油(包括蓖 麻油、油酸与亚油酸等),通过生物工程方法得到。


这种生物工程方法一般包括两种路线,即糖路线和植物油路线。其中糖路线是利用微生物,对葡萄糖或者纤维素等原料进行发酵得到尼龙原料的路线;植物油路线是指以植物油为原料 (比如蓖麻油),经过一系列化学转化得到尼龙原料的路线。


一文了解生物基尼龙材料改性与应用进展

经过生物工程方法得到的尼龙原料经过开环聚合或 者缩合聚合制备出的尼龙材料统称为生物基尼龙材 料。常见的生物基尼龙材料包括尼龙11、尼龙 1010、尼龙 610、尼龙 510、尼龙 410、尼龙 1012 等,其结构如图1所示。


一文了解生物基尼龙材料改性与应用进展


与来源于石油的尼龙6和尼龙66相比,生物基尼龙(如尼龙11和尼龙1010)具有更长的烷基链, 熔点在180~195℃之间,比尼龙6和尼龙66的熔点低30~60℃。


因此生物基尼龙在进行熔融挤出改性时具有加工温度低、能耗小的优点,而且更长的烷基链使得生物基尼龙吸水率更低 (一般在 0.1%~ 0.4%),冲击强度比尼龙6和尼龙66高50%,具有更好的韧性,但是拉伸强度和模量不如尼龙6和尼龙66高。


与来源于石油的尼龙6和尼龙66主要作为工程塑料广泛应用不同,生物基尼龙在天然气输送管道、医用防护镜、金属防护涂层、高端防火型油气分离器和曲轴端盖、食品包装、代替尼龙11和尼龙12作为汽车输油管、LED封装部件、体育器械、光导纤维等领域有众多应用。


生物基尼龙增强改性

一文了解生物基尼龙材料改性与应用进展


在生物基尼龙增强改性方面,研究者对尼龙11和尼龙1010的研究最为广泛,对于其他生物基尼龙,如尼龙610、尼龙510、尼龙410,增强改性的研究相对较少。


一文了解生物基尼龙材料改性与应用进展

01

Kind等通过代谢工程制备了戊二胺,与癸二酸进行缩聚反应制备了尼龙510生物基聚合物,特性黏数达到141mL/g,熔点215℃,与通用的尼龙6和尼龙66接近,密度只有1.07g/cm3 ,低于尼龙6和尼龙66的1.14g/cm3。


他们在双螺杆挤出机中进行了尼龙510与玻璃纤维的熔融共混,玻纤质量分数30%,并与同样玻纤质量分数的尼龙6和尼龙66 共混物进行了力学 性能对比,发现拉伸强度 155MPa, 略低于尼龙6和尼龙 66 的 179MPa 和 188MPa,断裂伸长率3.9%,略好于尼龙6和66尼 龙的3.8%和3.7%,缺口冲击强度12kJ/m2,优于尼龙66的10kJ/m2 ,表现出良好的力学性能。


一文了解生物基尼龙材料改性与应用进展

02

Leszczynska等在双螺杆挤出机中进行了尼龙410与乙酸处理的微晶纤维素的熔融共混,发现经过处理后纤维素热稳定性提高,更加有利于纤维素在尼龙基体中的分散,当纤维素质量分数在 1%~ 5%时,共混物熔点和结晶温度逐渐下降,储能模量逐渐提高。


生物基尼龙增韧改性

对生物基尼龙进行增韧改性时,由于增韧剂多为聚烯烃这种非极性材料,而尼龙属于极性聚合物,为了实现两者的有效共混往往需要加入接枝型相容剂,一般以马来酸酐为接枝单体。


在进行熔融共混时,相容剂中接枝的马来酸酐与尼龙链末端的胺基和羧基进行原位增容反应,生成的接枝物具有界面相容性,显著提高了增韧剂分散效果。当材料受到冲击应力时,基体材料可以很好地将应力转移到增韧剂分散相中,从而显著提高材料韧性。


01

尼龙11增韧改性


Kawada等在双螺杆挤出机中进行了尼龙11、PP与马来酸酐接枝乙烯-丁烯共聚物(m-EBR)的熔融共混,发现当PP为主要组分、尼龙11为分散相、m-EBR 为相容剂时,通过控制共混物微观形态,材料表现出良好的弯曲强度和冲击强度,当PP∶尼龙11∶m-EBR质量比为65∶25∶10时,共混物弯曲强度为(1120±20)MPa,缺口冲击强度为 (9.1±0.6) kJ/m2 ,性能优于嵌段PP材料,这是 由于相容剂位于分散相中,并且在微观上形成了 “salami”结构造成的。


后来,Kawada 等还发现当PP∶尼龙11∶m-EBR 质量比为 30∶60∶10 时, 共混物弯曲模量为(1090±20)MPa,缺口冲击强 度为(98±5)kJ/m2 ,扫描电镜显示m-EBR在尼龙和PP双连续相界面形成了10~20nm的颗粒,整个 共混物微观结构呈现“salami”结构,由于这种纳米结构弹性体的存在,使得共混物缺口冲击强度比纯的尼龙和PP分别提高了近10倍和40倍,同时还具有良好的弯曲模量,这种共混物将在汽车领域有广泛应用。


02

尼龙1010增韧改性


Quiles-Carrillo 等在双螺杆挤出机中进行了尼龙 1010、生物基高密度聚乙烯、没食子酸和马来酸酐改性的亚麻籽油的熔融共混研究,发现没食子酸的加入显著提高了生物基高密度聚乙烯的热稳定性,马来酸酐改性的亚麻籽油可以显著提高共混物的塑性和冲击韧性,当尼龙 1010∶生物基高密度聚乙烯∶没食子酸∶马来酸酐改性的亚麻籽油质量比为 70∶30∶0.8∶5 时,共混物冲击强度从未加入改性剂的(2.8±0.2)kJ/m2 增加到(4.3± 0.2)kJ/m2 ,拉伸强度则从(26.9±1.9)MPa下降到 (23.3±0.6)MPa,这是由于加入马来酸酐改性的亚麻籽油后高密度聚乙烯分散相的粒径从15µm下降 到 6µm,显著提高的分散性有利于共混物冲击强度的提高。


Yu 等在双螺杆挤出机中进行了尼龙1010与SEBS、POE和EVA三种增韧剂的熔融共混研究,分别以三种增韧剂的马来酸酐接枝物作为相容剂,发现当增韧剂质量分数大于 20% 时,三种共混物的冲击强度均大于50kJ/m2 ,随着相容剂质量分数的提高,POE 和 EVA 为增韧剂的体系,分散相粒径从1µm下降到0.1µm,体系耗散能密度也随之逐渐增加,POE体系中当尼龙与增韧剂质量比为80∶20时具有最高的低温冲击强度。


03

其他生物基尼龙增韧改性


Teyssandier等在双螺杆挤出机中进行了半芳香族生物基尼龙PAXD与淀粉接枝聚丙烯以及环氧树脂相容剂的熔融共混,当PAXD与淀粉接枝聚丙烯比例为7∶3 时,随着相容剂从2.5% 增加到7.5%,共混物的断裂伸长率从5.6% 增加到21%, 缺口冲击强度从3.5kJ/m2增加到4.9kJ/m2 ,随着相容剂质量分数的增加,共混物中PP组分的结晶温度从119.5℃增加到123.5℃,尼龙组分的结晶温度从151℃下降到148℃,两个组分的结晶焓也有所降低,表明两者的相容性逐渐提高。


一文了解生物基尼龙材料改性与应用进展

一文了解生物基尼龙材料改性与应用进展

生物基尼龙阻燃改性

一文了解生物基尼龙材料改性与应用进展

随着人们环保意识的增强,生物基尼龙材料的阻燃以膨胀性阻燃剂为主,这种阻燃剂含有酸源、炭源和气源,酸源又称脱水剂或炭化促进剂,一般是无机酸或燃烧中能原位生成酸的化合物;炭源也叫成炭剂,是形成泡沫炭化层的基础,主要是一些含碳量高的多羟基化合物;气源也叫发泡源,是含氮化合物。通过上述三种组分的协同配合,膨胀性阻燃剂可以实现气相、固相的有效阻燃。


Pagacz 等在惰性气氛中研究了尼龙410、尼龙 610、尼龙1010 和尼龙1012 的热裂解过程,通过对裂解产物的分析,提出了上述生物基尼龙材料的热裂解机理,这对生物基尼龙材料的阻燃改性具有重要指导意义。


01

尼龙11阻燃改性


Macheca等在双螺杆挤出机中进行了尼龙11与不同类型黏土的熔融共混,发现经过表面处理的蛭石、蒙脱土和海泡石当添加量为 10% 时,都可以很好地分散到尼龙基体中,海泡石和蛭石可以显著降低共混物的峰值热释放速率以及烟气产生速率,共混物拉伸强度和杨氏模量显著提高,杨氏模量是纯尼龙材料的两倍,除了海泡石之外,共混物的断裂伸长率比纯尼龙材料均有所提高。


在尼龙11 阻燃改性研究中,研究者以含有磷元素的膨胀型阻燃剂进行改性。


一文了解生物基尼龙材料改性与应用进展

01

Negrell等制备了含有环状磷化物的二元酸化合物(DOPOITA),然后与ω-氨基十一酸进行缩合反应,制备了主链含有磷化物的共聚尼龙11,摩尔质量为 15000~30000g/mol,磷元素质量分数在0.3%~1%之间,发现随着尼龙11中磷元素质量分数的增加,结晶温度从纯尼龙11的114℃逐渐增加到 120℃,熔点从纯尼龙11 的160℃降低到155℃,当磷元素质量分数为0.5%时,尼龙11的氧指数达到 40%, 垂直燃烧性能达到 V-0 (样条 厚 度 3.2mm),具有良好的自熄性。


一文了解生物基尼龙材料改性与应用进展

02

Jin 等首先通过三聚氰胺与对甲苯磺酸进行反应,然后加入多聚磷酸铵合成了一种大分子膨胀型阻燃剂 (AM-APP),这种阻燃剂含有酸源和气源。


他们在在双螺杆挤出机中进行了尼龙11、AM-APP和二氧化钛的熔融共混,发现当AM-APP 和二氧化钛的添加量分别为22%和3%时,共混物的极限氧指数从22.2%增加到29.2%,垂直燃烧性能达到 V-0 (样条厚度3.2mm),燃烧过程中样条没有熔融滴落现象,共混物峰值热释放速率从纯尼龙11的 943.4kW/m2 显著下降到 177.5kW/m2 ,通过热重-红外联用分析(TG-FTIR)发现 AM-APP 在燃烧过程中生成了膨胀碳结构,并释放出惰性气 体,二氧化钛的存在稳定了形成的膨胀碳。


02

尼龙1010阻燃改性


Battegazzore等在双螺杆挤出机中进行了尼龙1010与不同类型阻燃剂的熔融共混,发现当多聚 磷酸铵/季戊四醇和多聚磷酸铵/淀粉复配阻燃剂质 量分数达到30% 时,共混物拉伸强度下降30%, 断裂伸长率为16%~17%,共混物热释放速率和峰值热释放速率从纯尼龙的32.6kJ/g、720W/g下降到20.6kJ/g和640W/g,表现出良好的阻燃效果。同时 他们还发现当把相同的阻燃剂通过光交联的方式涂 覆到尼龙1010表面时,只需要加入熔融共混用量 30%的阻燃剂就可以达到相同的阻燃效果。


03

其他生物基尼龙阻燃改性


一文了解生物基尼龙材料改性与应用进展

01

Shabanian 等以来源于生物基的二元酸为原料制备了半芳香族尼龙,通过在溶液中与改性纳米蒙脱土共混制备了 3% 和 6% 质量分数的共混物,发现蒙脱土的加入提高了共混物热稳定性,当蒙脱土质量分数为3%时,在氮气中失重5%的温度T5% 从纯尼龙243℃增加到275℃,共混物峰值热释放速率和总热释放速率分别为86W/g 和 13.6kJ/g,均低于纯尼龙的111W/g和13.7kJ/g,表现出一定的阻燃效果。


一文了解生物基尼龙材料改性与应用进展

02

Shabanian等以来源于生物基的二元酸为原料制备了半芳香族尼龙BPA,通过离子交换反应制备了含有磷元素和β环糊精的改性纳米蒙脱土,在溶液中与改性纳米蒙脱土共混制备了2%和4%质量分数的共混物,随着改性纳米蒙脱土的加入,共混物表现出良好的热稳定性,在氮气中T5%从纯尼龙 153℃增加到188℃以上,加入4%含有β环糊精改性纳米蒙脱土后除了可以提高共混物热稳定性外,共混物力学性能也有提高,弹性模量从纯尼龙的 2.2GPa 增加到 2.6GPa,拉伸强度从 54.6 增加到 61.3MPa。


加入4%含有磷元素改性的纳米蒙脱土,共混物力学性能有所提高,弹性模量从纯尼龙的 2.2GPa增加到3.0GPa,拉伸强度从54.6MPa增加到 69.5MPa,此外共混物阻燃性能也有提高:峰值热释放速率和总热释放速率分别为38.9W/g和8.6kJ/g,均低于纯尼龙的47.6W/g和14.7kJ/g。


生物基尼龙电性能改性


生物基尼龙的导电机理可以用逾渗理论进行描述。当导电填料质量分数小时,复合材料表现出绝缘体特征,当填料质量分数达到某一特定值时,复合材料电导率会发生突变,表明填料在基体中的分散状态发生了突变,形成了逾渗网络,随着填料质量分数继续增加,复合材料导电率也不会有大幅度提高。


研究者对生物基尼龙进行电性能改性主要以改善材料导电和介电性能为主。


一文了解生物基尼龙材料改性与应用进展

01

Rashmi 等在双螺杆挤出机中进行了尼龙11与石墨烯的熔融共混,发现制备的共混物中石墨烯均匀分散在尼龙基体中,随着石墨烯质量分数的提高,尼龙11结晶温度和结晶度均有所增加,当石墨烯质量分数为5%时,在1000Hz下介电常数达到9.2,比纯尼龙11提高了 3 倍,电导率达到 5.2× 10-6S/m,共混物拉伸强度和模量比纯尼龙11 分别增加25%和56%,断裂伸长率下降80%。


一文了解生物基尼龙材料改性与应用进展

02

Leveque 等在双螺杆挤出机中进行了尼龙11与层状硅酸盐填料的熔融共混,研究了填料类型 (Cloisite20A、10A和Na+ )和质量分数对共混物薄膜压电和介电性能的影响,发现室温下共混物薄膜压电常数与结晶相和填料类型有关,Cloisite Na+为填料的尼龙11共混物薄膜压电常数最高、极化性 能最高、极化响应最大,并研究了尼龙11/Cloisite Na+ 共混物薄膜振动能量回收性能。他们还发现加 入5%硅酸盐填料后,共混物力学性能比纯尼龙11有所增加,拉伸模量从纯尼龙11的840.5MPa增加到1107.5MPa。


生物基尼龙导热改性

生物基尼龙的导热机理与导电机理有些类似,可以用通路理论来描述,当导热填料质量分数达到一定数值后,填料在基体中的分散状态发生改变,形成了导热通路,从而显著提高材料导热性能。


Mosanenzadeh等在双螺杆挤出机中进行了两种不同黏度尼龙610与氮化硼的熔融共混,发现当氮化硼体积分数为2%~33%时,共混物热导率显著提高,当氮化硼体积分数为 33% 时,低黏度尼龙共混物的热导率要高于相同比例下高黏度尼龙共混物,分别达到3.6W/(m·K)和3.5W/(m·K),是纯尼龙610的9倍,随着氮化硼体积分数的增加,共混物硬度和平均断裂能量有所下降,高黏度尼龙共混物的力学性能要好于低黏度尼龙材料,随着氮化硼质量分数的提高,共混物玻璃化转变温度变化不大,在54~61℃之间。


一文了解生物基尼龙材料改性与应用进展


结 语


综上所述,在生物基尼龙改性领域中,以下几个方面值得进行深入研究。


(1)生物基尼龙结晶过程。生物基尼龙材料的结晶热力学和结晶动力学对尼龙共混和改性研究具有重要意义,尤其对优化尼龙材料的加工工艺、建立材料结构-性能关系意义重大。


(2)生物基尼龙流变行为。生物基尼龙材料在流动过程中黏度、剪切应力等流变参数的变化对材料加工具有重要指导意义,值得进行深入研究。


(3)生物基尼龙共混物熔融共混过程中微观结构与界面变化。多数研究者对生物基尼龙材料进行各种改性,研究了共混物诸多方面的性能,但是对于决定共混物性能的两个关键因素:微观结构和界面的研究较少,该领域的研究成果必将为生物基尼龙材料的改性研究提供理论指导。


(4)开发新的生物基尼龙材料。通过生物工程方法制备新的生物基二元酸或二元胺,有望得到新型可再生尼龙材料,为促进生物基尼龙材料的应用提供新的选择。


(5)生物基尼龙新的加工方式。增材制造是目前材料加工领域比较热门的一种加工方式,生物基尼龙材料增材制造的研究目前正处于起步阶段。

一文了解生物基尼龙材料改性与应用进展

展开阅读全文

页面更新:2024-05-04

标签:马来   生物   酸酐   基体   材料   黏度   填料   速率   尼龙   结晶   强度   分数   进展   性能   发现   质量   数码

1 2 3 4 5

上滑加载更多 ↓
推荐阅读:
友情链接:
更多:

本站资料均由网友自行发布提供,仅用于学习交流。如有版权问题,请与我联系,QQ:4156828  

© CopyRight 2020-2024 All Rights Reserved. Powered By 71396.com 闽ICP备11008920号-4
闽公网安备35020302034903号

Top