STM32F4芯片嵌入式学习7

文档是本人学习总结的文档,有些乱,勿怪。

1、STM32F407时钟系统

STM32F4芯片嵌入式学习7

在 STM32F4 中,有 5 个最重要的时钟源,为 HSI、HSE、LSI、LSE、PLL。其中 PLL 实际是分为两个时钟源,分别为主 PLL 和专用 PLL。从时钟频率来分可以分为高速时钟源和低速时钟源,在这 5 个中 HSI,HSE 以及 PLL 是高速时钟,LSI 和 LSE 是低速时钟。从来源可分为外部时钟源和内部时钟源,外部时钟源就是从外部通过接晶振的方式获取时钟源,其中 HSE 和LSE 是外部时钟源,其他的是内部时钟源。下面我们看看 STM32F4 的这 5 个时钟源,我们讲解顺序是按图中红圈标示的顺序:

①、LSI 是低速内部时钟,RC 振荡器,频率为 32kHz 左右。供独立看门狗和自动唤醒单元使用。

②、LSE 是低速外部时钟,接频率为 32.768kHz 的石英晶体。这个主要是 RTC 的时钟源。

③、HSE 是高速外部时钟,可接石英/陶瓷谐振器,或者接外部时钟源,频率范围为 4MHz~26MHz。我们的开发板接的是 8M 的晶振。HSE 也可以直接做为系统时钟或者 PLL 输入。

④、HSI 是高速内部时钟,RC 振荡器,频率为 16MHz。可以直接作为系统时钟或者用作 PLL输入。

⑤、PLL 为锁相环倍频输出。STM32F4 有两个 PLL:

1) 主 PLL(PLL)由 HSE 或者 HSI 提供时钟信号,并具有两个不同的输出时钟。

第一个输出 PLLP 用于生成高速的系统时钟(最高 168MHz)

第二个输出 PLLQ 用于生成 USB OTG FS 的时钟(48MHz),随机数发生器的时钟和 SDIO

时钟。

2)专用 PLL(PLLI2S)用于生成精确时钟,从而在 I2S 接口实现高品质音频性能

这里我们着重看看主 PLL 时钟第一个高速时钟输出 PLLP 的计算方法。如图

STM32F4芯片嵌入式学习7

可以看出。主 PLL 时钟的时钟源要先经过一个分频系数为 M 的分频器,然后经过倍频系数为 N 的倍频器出来之后的时候还需要经过一个分频系数为 P(第一个输出 PLLP)或者 Q(第二个输出 PLLQ)的分频器分频之后,最后才生成最终的主 PLL 时钟。例如我们的外部晶振选择 8MHz。同时我们设置相应的分频器 M=8,倍频器倍频系数 N=336,分频器分频系数 P=2,那么主 PLL 生成的第一个输出高速时钟 PLLP 为:

PLL=8MHz * N/ (M*P)=8MHz* 336 /(8*2) = 168MHz

如果我们选择HSE为PLL时钟源,同时SYSCLK时钟源为PLL,那么SYSCLK时钟为 168MHz。这对于我们后面的实验都是采用这样的配置。上面我们简要概括了 STM32 的时钟源,那么这 5 个时钟源是怎么给各个外设以及系统提供时钟的呢?这里我们选择一些比较常用的时钟知识来讲解。图1中

A.这里是看门狗时钟输入。从图中可以看出,看门狗时钟源只能是低速的 LSI 时钟。

B.这里是 RTC 时钟源,从图上可以看出,RTC 的时钟源可以选择 LSI,LSE,以及HSE 分频后的时钟,HSE 分频系数为 2~31。

C.这里是 STM32F4 输出时钟 MCO1 和 MCO2。MCO1 是向芯片的 PA8 引脚输出时钟。它有四个时钟来源分别为:HSI,LSE,HSE 和 PLL 时钟。MCO2 是向芯片的PC9 输出时钟,它同样有四个时钟来源分别为:HSE,PLL,SYSCLK 以及 PLLI2S时钟。MCO 输出时钟频率最大不超过 100MHz。

D.这里是系统时钟。从图 可以看出,SYSCLK 系统时钟来源有三个方面:HSI,HSE 和 PLL。在我们实际应用中,因为对时钟速度要求都比较高我们才会选用 STM32F4 这种级别的处理器,所以一般情况下,都是采用 PLL 作为 SYSCLK时钟源。根据前面的计算公式,大家就可以算出你的系统的 SYSCLK 是多少。

E.这里我们指的是以太网 PTP 时钟,AHB 时钟,APB2 高速时钟,APB1 低速时钟。这些时钟都是来源于 SYSCLK 系统时钟。其中以太网 PTP 时钟是使用系统时钟。AHB,APB2 和 APB1 时钟是经过 SYSCLK 时钟分频得来。这里大家记住,AHB最大时钟为168MHz, APB2高速时钟最大频率为84MHz,而APB1低速时钟最大频率为 42MHz。

F.这里是指 I2S 时钟源。从图 4.3.1 可以看出,I2S 的时钟源来源于 PLLI2S 或者映射到 I2S_CKIN 引脚的外部时钟。I2S 出于音质的考虑,对时钟精度要求很高。探索者 STM32F4 开发板使用的是内部 PLLI2SCLK。

G.这是 STM32F4 内部以太网 MAC 时钟的来源。对于 MII 接口来说,必须向外部PHY 芯片提供 25Mhz 的时钟,这个时钟,可以由 PHY 芯片外接晶振,或者使用STM32F4 的 MCO 输出来提供。然后, PHY 芯片再给 STM32F4 提 供ETH_MII_TX_CLK 和 ETH_MII_RX_CLK 时钟。对于 RMII 接口来说,外部必须提供 50Mhz 的时钟驱动 PHY 和 STM32F4 的 ETH_RMII_REF_CLK,这个 50Mhz时钟可以来自 PHY、有源晶振或者 STM32F4 的 MCO。我们的开发板使用的是RMII 接口,使用 PHY 芯片提供 50Mhz 时钟驱动 STM32F4 的ETH_RMII_REF_CLK。

H.这里是指外部 PHY 提供的 USB OTG HS(60MHZ)时钟。这里还需要说明一下,Cortex 系统定时器 Systick 的时钟源可以是 AHB 时钟 HCLK 或HCLK 的 8 分频。具体配置请参考 Systick 定时器配置,我们后面会在 5.1 小节讲解 delay 文件夹代码的时候讲解。在以上的时钟输出中,有很多是带使能控制的,例如 AHB 总线时钟、内核时钟、各种 APB1外设、APB2 外设等等。当需要使用某模块时,记得一定要先使能对应的时钟。后面我们讲解实例的时候会讲解到时钟使能的方法。

2、STM32F4芯片时间系统使能、

上一小节我们对 STM32F4 时钟树进行了初步的讲解,接下来我们来讲解一下 STM32F4 的系统时钟配置。STM32F4 时钟系统初始化是在 system_stm32f4xx.c 中的 SystemInit()函数中完成的。对于系统时钟关键寄存器设置主要是在 SystemInit 函数中调用 SetSysClock()函数来设置的。我们可以先看看 SystemInit ()函数体:

void SystemInit(void)

{

/* FPU settings ------------------------------------------------------------*/

#if (__FPU_PRESENT == 1) && (__FPU_USED == 1)

SCB->CPACR |= ((3UL << 10*2)|(3UL << 11*2)); /* set CP10 and CP11 Full Access */

#endif

/* Reset the RCC clock configuration to the default reset state ------------*/

/* Set HSION bit */

RCC->CR |= (uint32_t)0x00000001;

/* Reset CFGR register */

RCC->CFGR = 0x00000000;

/* Reset HSEON, CSSON and PLLON bits */

RCC->CR &= (uint32_t)0xFEF6FFFF;

/* Reset PLLCFGR register */

RCC->PLLCFGR = 0x24003010;

/* Reset HSEBYP bit */

RCC->CR &= (uint32_t)0xFFFBFFFF;

/* Disable all interrupts */

RCC->CIR = 0x00000000;

#if defined (DATA_IN_ExtSRAM) || defined (DATA_IN_ExtSDRAM)

SystemInit_ExtMemCtl();

#endif /* DATA_IN_ExtSRAM || DATA_IN_ExtSDRAM */


/* Configure the System clock source, PLL Multiplier and Divider factors,

AHB/APBx prescalers and Flash settings ----------------------------------*/

SetSysClock();

/* Configure the Vector Table location add offset address ------------------*/

#ifdef VECT_TAB_SRAM

SCB->VTOR = SRAM_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal SRAM */

#else

SCB->VTOR = FLASH_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal FLASH */

#endif

}

SystemInit 函数开始先进行浮点运算单元设置,然后是复位 PLLCFGR,CFGR 寄存器,同时通过设置 CR 寄存器的 HSI 时钟使能位来打开 HSI 时钟。默认情况下如果 CFGR 寄存器复位,那么是选择 HSI 作为系统时钟,这点大家可以查看 RCC->CFGR 寄存器的位描述最低 2 位可以得知,当低两位配置为 00 的时候(复位之后),会选择 HSI 振荡器为系统时钟。也就是说,调用 SystemInit 函数之后,首先是选择 HSI 作为系统时钟。下面是 RCC->CFGR 寄存器的位 1:0配置描述(CFGR 寄存器详细描述请参考《STM32F4 中文参考手册》6.3.31CFGR 寄存器配置表)如下表

STM32F4芯片嵌入式学习7

在设置完相关寄存器后,接下来 SystemInit 函数内部会调用 SetSysClock 函数。这个函数比较长,我们就把函数一些关键代码行截取出来给大家讲解一下。这里我们省略一些宏定义标识符值的判断而直接把针对 STM32F407 比较重要的内容贴出来:

STM32F4芯片嵌入式学习7

STM32F4芯片嵌入式学习7

这段代码的大致流程是这样的:先使能外部时钟 HSE,等待 HSE 稳定之后,配置AHB,APB1,APB2 时钟相关的分频因子,也就是相关外设的时钟。等待这些都配置完成之后,打开主 PLL 时钟,然后设置主 PLL 作为系统时钟 SYSCLK 时钟源。如果 HSE 不能达到就绪状态(比如外部晶振不能稳定或者没有外部晶振),那么依然会是 HSI 作为系统时钟。在这里要特别提出来,在设置主 PLL 时钟的时候,会要设置一系列的分频系数和倍频系数参数。大家可以从 SetSysClock 函数的这行代码看出:

RCC->PLLCFGR = PLL_M | (PLL_N << 6) | (((PLL_P >> 1) -1) << 16) |

(RCC_PLLCFGR_PLLSRC_HSE) | (PLL_Q << 24);

这些参数是通过宏定义标识符的值来设置的。默认的配置在 System_stm32f4xx.c 文件开头的地方配置。对于我们开发板,我们的设置参数值如下:

#define PLL_M 8

#define PLL_Q 7

#define PLL_N 336

#define PLL_P 2

所以我们的主 PLL 时钟为:

PLL=8MHz * N/ (M*P)=8MHz* 336 /(8*2) = 168MHz

在开发过程中,我们可以通过调整这些值来设置我们的系统时钟。这里还有个特别需要注意的地方,就是我们还要同步修改 stm32f4xx.h 中宏定义标识符HSE_VALUE 的值为我们的外部时钟:

#if !defined (HSE_VALUE)

#define HSE_VALUE ((uint32_t)8000000) /*!< Value of the External oscillator in Hz */

#endif /* HSE_VALUE */

这里默认固件库配置的是 25000000,我们外部时钟为 8MHz,所以我们根据我们硬件情况修改为 8000000 即可

讲到这里,大家对 SystemInit 函数的流程会有个比较清晰的理解。那么 SystemInit 函数是怎么被系统调用的呢?SystemInit 是整个设置系统时钟的入口函数。这个函数对于我们使用 ST提供的 STM32F4 固件库的话,会在系统启动之后先执行 main 函数,然后再接着执行 SystemInit函数实现系统相关时钟的设置。这个过程设置是在启动文件 startup_stm32f40_41xxx.s 中间设置的,我们接下来看看启动文件中这段启动代码:

; Reset handler

Reset_Handler PROC

EXPORT Reset_Handler [WEAK]

IMPORT SystemInit

IMPORT __main

LDR R0, =SystemInit

BLX R0

LDR R0, =__main

BX R0

ENDP

这段代码的作用是在系统复位之后引导进入 main 函数,同时在进入 main 函数之前,首先要调用 SystemInit 系统初始化函数完成系统时钟等相关配置。

最后我们总结一下 SystemInit()函数中设置的系统时钟大小:

SYSCLK(系统时钟) =168MHz

AHB 总线时钟(HCLK=SYSCLK)

=168MHz

APB1 总线时钟(PCLK1=SYSCLK/4) =42MHz

APB2 总线时钟(PCLK2=SYSCLK/2) =84MHz

PLL 主时钟

=168MHz

ARM 指令集中的跳转指令可以完成从当前指令向前或向后的 32MB 的地址空间的跳转,包括以下 4 条指令:

(1) B 跳转指令

(2) BL 带返回的跳转指令

(3) BLX 带返回和状态切换的跳转指令

(4) BX 带状态切换的跳转指令

展开阅读全文

页面更新:2024-02-17

标签:倍频器   芯片   分频器   分频   标识符   寄存器   振荡器   系数   总线   时钟   指令   嵌入式   函数   频率   代码   系统   科技

1 2 3 4 5

上滑加载更多 ↓
推荐阅读:
友情链接:
更多:

本站资料均由网友自行发布提供,仅用于学习交流。如有版权问题,请与我联系,QQ:4156828  

© CopyRight 2020-2024 All Rights Reserved. Powered By 71396.com 闽ICP备11008920号-4
闽公网安备35020302034903号

Top