超世界纪录60倍!中国科大团队将光存储时间提升至1小时

超世界纪录60倍!中国科大团队将光存储时间提升至1小时

封面来源:acronis官网


光速有多快?每秒30万公里又是什么概念?你能想象如何捕获并存储光速吗?

据中国科学技术大学官网消息,郭光灿院士团队在光量子存储领域取得重要突破。该团队李传锋、周宗权研究组将相干光的存储时间提升至1小时,大幅度刷新了2013年德国团队光存储1分钟的世界纪录,向实现量子U盘迈出重要一步。

该成果4月22日发表在国际知名期刊《自然·通讯》上。该工作得到审稿人的高度评价:“该成果是一个巨大的成就。”

论文第一作者是中科院量子信息重点实验室博士研究生马钰。该工作得到了科技部、国家自然科学基金委、安徽省以及中国科学院的资助。周宗权得到中科院青年创新促进会的资助。

李传锋、周宗权研究组2015年自制光学拉曼外差探测核磁共振谱仪,依托该仪器,他们精确刻画了掺铕硅酸钇晶体光学跃迁的完整哈密顿量,并在理论上预测了一阶塞曼效应为零(ZEFOZ)磁场下的能级结构。

科研人员结合理论预言首次实验测定掺铕硅酸钇晶体在ZEFOZ磁场下的完整能级结构,并结合原子频率梳(AFC)量子存储方案以及ZEFOZ技术,成功实现光信号的长寿命存储。实验中,光信号首先被AFC吸收成为铕离子系综的光学激发,接着被转移为自旋激发,经历一系列自旋保护脉冲操作后,最终被读取为光信号,总存储时间长达1小时,且光的相位存储保真度高达96.4 ± 2.5%。

超世界纪录60倍!中国科大团队将光存储时间提升至1小时

存储方案示意图,信号光场(probe)被梳状的原子吸收谱吸收,并被控制光场(control)存储为自旋激发,在射频(RF)场的操控下延长存储时间,最终读取为光信号。

(图片源自中国科学技术大学)


超世界纪录60倍!中国科大团队将光存储时间提升至1小时

读出光脉冲信号强度与存储时间的关系。

(图片源自中国科学技术大学)


30万公里/秒的光速如何降低?

量子U盘技术又有什么作用?

众所周知,现在光纤网络遍布全球,光已成为现代信息传输的基本载体。对光的捕获及存储可以帮助人们更有效地利用光场。而光速是指光波或电磁波在真空或介质中的传播速度。真空中的光速是目前所发现的自然界物体运动的最大速度,真空中的光速等于299,792,458米/秒。这个速度并不是一个测量值,而是一个定义。

光速被认为是宇宙中最快的速度,在爱因斯坦的相对论中光速是无法被超越的,虽然光速无法进一步突破,但科学家却反其道而行,一直在思考如何让光的速度下降。科学家们发现,在任何透明或者半透明的介质(比如玻璃和水)中,光速会降低因此就从这方面入手考虑如何降低光速。

早在1999年,美国哈佛大学团队利用冷原子气体把光速降至17米/秒。2013年德国达姆施塔特大学团队利用掺镨硅酸钇晶体使得光停留了1分钟,创下该领域的世界纪录,然而这一光存储时间仍远低于量子U盘的技术需求。

2015年,苏格兰的科学家使用了单个光子通过一个特殊的装置。在实验设置中,一个光子处于正常的状态前进,另一个光子使用特殊的装置释放,科学家对比两个途径光子的速度,最后发现后一组的光子速度出现的下降。有趣的是,即便光子回到自由的空间中,其仍然以较低的速度运行,这个实验改变了科学界对光速的看法。

2015年澳大利亚国立大学团队在一阶塞曼效应为零(ZEFOZ)磁场下,观察到掺铕硅酸钇晶体的核自旋相干寿命长达6小时,让人们看到了长寿命光存储的希望。然而由于对该材料的能级结构缺乏了解,至今未能实现长寿命光存储。


降低光速的方法有了

应该如何存储

光的存储在量子通信领域尤其重要,这是因为基于光量子存储可以构建量子中继,从而克服信道损耗建立起大尺度量子网络。在这里就不得不提到前文所述的“量子U盘”。

量子U盘是一种革命性的远程量子通信的解决方案,比如我们可以把单个光子存储进存储器中,并且在存储寿命范围内,利用汽车、高铁、飞机等运输工具把存储器运输到任意指定地点,这就实现了量子U盘的功能。

因为量子U盘原则上可以实现对量子纠缠物体的经典搬运。量子通信将不再依赖光纤布网,任何经典交通工具能到达的地方,量子U盘携带量子纠缠就能到达。它将是一种高灵活性且相对低成本的点对点量子通信方式,有望在身份认证、签名、量子密码、量子信息共享等各领域取得应用。

值得一提的是,量子存储器的容量问题,经典存储器一般以比特为单位,现在的经典存储器可以达到TB(2的40次方)的量级。经典存储器一个存储单元只存储一个比特,所以存储器的容量实际上就是经典存储单元的个数。量子存储器由于量子相干性的特点,它的一个存储单元可以一次性存储N个量子比特,也就是N个模式。近期研究表明固态量子存储器的存储容量可达100个量子比特。这个容量已经远大于地球上所有经典存储器之和。

综合来看,由于量子信息不可复制且不可放大,量子存储器在量子信息中的地位比经典存储器在经典信息中的地位更加重要。国际上有许多研究组在从事量子存储器的研究,比较主流的物理系统是冷原子、热原子以及稀土离子掺杂晶体。目前量子存储器的各项独立指标都有比较好的结果,然而综合指标仍然距离量子中继的要求相差较远。量子计算需求的量子存储器综合指标相对低一些,但这种存储器的实际应用需要伴随量子计算研究的突破。

量子U盘研究当前面临的主要挑战是如何把单个光子高效率地存储进长寿命的自旋态中以及提高实际系统运输中的抗环境噪声能力。伴随以上研究的逐步推进,量子U盘有望率先进入实用环节。近期的理论研究表明,量子U盘在全球卫星量子通信、甚长基线干涉天文测量系统等领域均具有广泛应用。


本文参考资料:

《中国科大将光存储时间提升至1小时》——中国科学技术大学

《One-hour coherent optical storage in an atomic frequency comb memory》——Nature Communications

《量子十问》——中科院量子信息重点实验室-郭光灿院士



往期回顾

芯片加密技术是什么?如何实现芯片加密

芯片大缺货,滴滴竟然还想“造车”?

重磅!清华大学成立“芯片学院”

台积电:芯片缺货或持续到2023年

手机芯片全面缺货,缺货潮何时缓解?

关于OFweek电子工程

OFweek电子工程属于高科技行业门户OFweek维科网旗下,OFweek维科网现拥有会员1,000万余名,OFweek各行业网站及时报道行业动态,行业大事件,深入跟进行业热点,提供行业会员全面的资讯、技术和管理资源,举办各类线下、线上行业活动,并为高科技行业企业提供内容、品牌推广、会议展览、产业研究、产城服务、政企服务、产业基金、科技成果交易、培训、人才猎头、电商等整体和专业的服务。

OFweek相关活动

超世界纪录60倍!中国科大团队将光存储时间提升至1小时

点击文章下方【了解更多】报名

展开阅读全文

页面更新:2024-04-23

标签:维科   能级   团队   时间   硅酸   光子   量子   光速   存储器   世界纪录   晶体   原子   中国   信号   速度

1 2 3 4 5

上滑加载更多 ↓
推荐阅读:
友情链接:
更多:

本站资料均由网友自行发布提供,仅用于学习交流。如有版权问题,请与我联系,QQ:4156828  

© CopyRight 2020-2024 All Rights Reserved. Powered By 71396.com 闽ICP备11008920号-4
闽公网安备35020302034903号

Top